Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-02T21:55:01.560Z Has data issue: false hasContentIssue false

pH-sensitivity and Conformation Change of the N-terminal Methacrylated Peptide VK20

Published online by Cambridge University Press:  17 July 2017

Zewang You
Affiliation:
Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513Teltow, Germany Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476Potsdam, Germany
Marc Behl
Affiliation:
Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513Teltow, Germany
Candy Löwenberg
Affiliation:
Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513Teltow, Germany
Andreas Lendlein*
Affiliation:
Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513Teltow, Germany Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476Potsdam, Germany
Get access

Abstract

N-terminal methacrylation of peptide MAX1, which is capable of conformational changes by variation of the pH, results in a peptide, named VK20. Increasing the reactivity of this terminal group enables further coupling reactions or chemical modifications of the peptide. However, this end group functionalization may influence the ability of conformational changes of VK20, as well as its properties. In this paper, the influence of pH on the transition between random coil and ß-sheet conformation of VK20, including the transition kinetics, were investigated. At pH values of 9 and higher, the kinetics of ß-sheet formation increased for VK20, compared to MAX1. The self-assembly into ß-sheets recognized by the formation of a physically crosslinked gel was furthermore indicated by a significant increase of G’. An increase in pH (from 9 to 9.5) led to a faster gelation of the peptide VK20. Simultaneously, G’ was increased from 460 ± 70 Pa (at pH 9) to 1520 ± 180 Pa (at pH 9.5). At the nanoscale, the gel showed a highly interconnected fibrillary network structure with uniform fibril widths of approximately 3.4 ± 0.5 nm (N=30). The recovery of the peptide conformation back to random coil resulted in the dissolution of the gel, whereby the kinetics of the recovery depended on the pH. Conclusively, the ability of MAX1 to undergo conformational changes was not affected by N-terminal methacrylation whereas the kinetics of pH-sensitive ß-sheet formations has been increased.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lowik, D. W. P. M., Leunissen, E. H. P., van den Heuvel, M., Hansen, M. B. and van Hest, J. C. M., Chem. Soc. Rev., 39, 3394 (2010).CrossRefGoogle Scholar
Mart, R. J., Osborne, R. D., Stevens, M. M. and Ulijn, R. V., Soft Matter, 2, 822 (2006).CrossRefGoogle Scholar
Radu-Wu, L. C., Yang, J., Wu, K. and Kopeček, J, Biomacromolecules, 10, 2319 (2009).CrossRefGoogle Scholar
Guo, Y., Ma, Y., Xu, L., Li, J. and Yang, W., J. Phys. Chem. C, 111, 9172 (2007).CrossRefGoogle Scholar
Medina, S. H. and Schneider, J. P., J. Control. Release, 209, 317 (2015).CrossRefGoogle Scholar
Jing, P., Rudra, J. S., Herr, A. B. and Collier, J. H., Biomacromolecules, 9, 2438 (2008).CrossRefGoogle Scholar
Schneider, J. P., Pochan, D. J., Ozbas, B., Rajagopal, K., Pakstis, L. and Kretsinger, J., J. Am. Chem. Soc., 124, 15030 (2002).CrossRefGoogle Scholar
Hule, R. A., Nagarkar, R. P., Hammouda, B., Schneider, J. P. and Pochan, D. J., Macromolecules, 42, 7137 (2009).CrossRefGoogle Scholar
Geisler, I. M. and Schneider, J. P., Adv. Funct. Mater., 22, 529 (2012).CrossRefGoogle Scholar
Micklitsch, C. M., Medina, S. H., Yucel, T., Nagy-Smith, K. J., Pochan, D. J. and Schneider, J. P., Macromolecules, 48, 1281 (2015).CrossRefGoogle Scholar
Rajagopal, K., Lamm, M. S., Haines-Butterick, L. A., Pochan, D. J. and Schneider, J. P., Biomacromolecules, 10, 2619 (2009).CrossRefGoogle Scholar
Whitmore, L. and Wallace, B. A., Biopolymers, 89, 392 (2008).CrossRefGoogle Scholar
Barth, A., Biochim. Biophys. Acta - Bioenergetics, 1767, 1073 (2007).CrossRefGoogle Scholar
Kubelka, J. and Keiderling, T. A., J. Am. Chem. Soc., 123, 6142 (2001).CrossRefGoogle Scholar
Wu, C., Wang, Z., Lei, H., Zhang, W. and Duan, Y., J. Am. Chem. Soc., 129, 1225 (2007).CrossRefGoogle Scholar
Collier, J. H., Hu, B. H., Ruberti, J. W., Zhang, J., Shum, P., Thompson, D. H. and Messersmith, P. B., J. Am. Chem. Soc., 123, 9463 (2001).CrossRefGoogle Scholar
Nagy, K. J., Giano, M. C., Jin, A., Pochan, D. J. and Schneider, J. P., J. Am. Chem. Soc., 133, 14975 (2011).CrossRefGoogle Scholar
Aggeli, A., Bell, M., Carrick, L. M., Fishwick, C. W. G., Harding, R., Mawer, P. J., Radford, S. E., Strong, A. E. and Boden, N., J. Am. Chem. Soc., 125, 9619 (2003).CrossRefGoogle Scholar
Rajagopal, K., Ozbas, B., Pochan, D. J. and Schneider, J. P., Eur. Biophys. J., 35, 162 (2006).CrossRefGoogle Scholar
Yucel, T., Micklitsch, C. M., Schneider, J. P. and Pochan, D. J., Macromolecules, 41, 5763 (2008).CrossRefGoogle Scholar