Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T08:22:06.540Z Has data issue: false hasContentIssue false

Poly(HDDA)-Based Polymers for Microfabrication and Mechanobiology

Published online by Cambridge University Press:  16 January 2017

Daniela Espinosa-Hoyos*
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 Biosystems & Micromechanics Interdisciplinary Research Group (BioSyM), Singapore-MIT Alliance in Research & Technology (SMART), Singapore
Huifeng Du*
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Nicholas X. Fang
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Krystyn J. Van Vliet
Affiliation:
Biosystems & Micromechanics Interdisciplinary Research Group (BioSyM), Singapore-MIT Alliance in Research & Technology (SMART), Singapore Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
*
*(Email: ehoyos@mit.edu)

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Materials processing and additive manufacturing afford exciting opportunities in biomedical research, including the study of cell-material interactions. However, some of the most efficient materials for microfabrication are not wholly suitable for biological applications, require extensive post-processing or exhibit high mechanical stiffness that limits the range of applications. Conversely, materials exhibiting high cytocompatibility and low stiffness require long processing times with typically decreased spatial resolution of features. Here, we investigated the use of hexanediol diacrylate (HDDA), a classic and efficient polymer for stereolithography, for oligodendrocyte progenitor cell (OPC) culture. We developed composite HDDA-polyethylene glycol acrylate hydrogels that exhibited high biocompatibility, mechanical stiffness in the range of muscle tissue, and high printing efficiency at ∼5 μm resolution.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

References

REFERENCES

Pereira, R.F. and Bártolo, P.J., J. Eng. 1, 90 (2015)Google Scholar
Sun, C., Fang, N., Wu, D.M. and Zhang, X., Sensor Actuat. A-Phys. 121, 113 (2015)CrossRefGoogle Scholar
Xia, C. and Fang, N.X., Biomed. Microdevices 11, 1309 (2009)CrossRefGoogle Scholar
Zheng, X., Lee, H., Weisgraber, T.H., Shusteff, M., DeOtte, J., Duoss, E.B., Kuntz, J.D., Biener, M.M., Ge, Q., Jackson, J.A., Kucheyev, S.O., Fang, N.X. and Spadaccini, C.M., Science 344, 1373 (2014)CrossRefGoogle Scholar
Bae, C.J. and Halloran, J.W., Int. J. Appl. Ceram. Tec. 8, 1255 (2011)CrossRefGoogle Scholar
Li, N., Jia, W., Zhang, Y., Tan, F. and Zhang, J., Int. J. Pharm. 415, 169 (2011)CrossRefGoogle Scholar
Kloeckner, J., Bruzzano, S., Ogris, M. and Wagner, E., Bioconjug. Chem. 17, 1339 (2006)CrossRefGoogle Scholar
Zakhireh, S., Mahkam, M., Yadollahi, M. and Jafarirad, S., J. Polym. Res. 21, 398 (2014)CrossRefGoogle Scholar
Franklin, R.J.M. and ffrench-Constant, C., Nat. Rev. Neurosci. 9, 839 (2008)CrossRefGoogle Scholar
McCarthy, K.D. and Devellis, J., J. Cell. Biol. 85, 890 (1980)CrossRefGoogle Scholar
Hutter, J.L. and Bechhoefer, J., Rev. Sci. Instrum. 64, 1869 (1993)Google Scholar
Oliver, W.C. and Pharr, G.M., J. Mater. Res. 19, 3 (2004)CrossRefGoogle Scholar
Baumann, N. and Pham-Dinh, D., Physiol. Rev. 81, 871 (2001)CrossRefGoogle Scholar
Freudenberg, U., Hermann, A., Welzel, P.B., Stirl, K., Schwarz, S.C., Grimmer, M., Zieris, A., Panyanuwat, W., Zschoche, S., Meinhold, D., Storch, A. and Werner, C., Biomaterials 30, 5049 (2009)CrossRefGoogle Scholar
Hou, Y., Schoener, C.A., Regan, K.R., Munoz-Pinto, D., Hahn, M.S. and Grunlan, M.A., Biomacromolecules 11, 648 (2010)CrossRefGoogle Scholar
Mazzoccoli, J.P., Feke, D.L., Baskaran, H. and Pintauro, P.N., J. Biomed. Mater. Res. A. 93, 558 (2010)CrossRefGoogle Scholar
Gattazzo, F., Urciuolo, A. and Bonaldo, P., Biochim. Biophys. Acta. 1840, 2506 (2014)CrossRefGoogle Scholar
Jagielska, A., Norman, A.L., Whyte, G., Van Vliet, K.J., Guck, J. and Franklin, R.J.M., Stem Cells Dev. 21, 2905 (2012)CrossRefGoogle Scholar
Kim, J., Kong, Y.P., Niedzielski, S.M., Singh, R.K., Putnam, A.J. and Shikanov, A., Soft Matter 12, 2076 (2016)CrossRefGoogle Scholar
Welzel, P.B., Prokoph, S., Zieris, A., Grimmer, M., Zschoche, S., Freudenberg, U. and Werner, C., Polymers 3, 602 (2011)CrossRefGoogle Scholar