Published online by Cambridge University Press: 07 October 2019
An old procedure used to carry out a graphical derivation of curves, which is based on the optical properties of plane mirrors, has been adapted for the measurement of the contact angle (θ) formed between a liquid drop and a flat solid substrate in wettability experiments carried out by the so-called “sessile drop” method. The method was tested for mercury on soda-lime glass at room temperature in air as well as for Cusil (Ag-28wt.%Cu) and Incusil-ABA (Ag-27wt.%Cu-12wt.%In-2wt.%Ti) brazing alloys on pressureless-sintered silicon carbide (PLS-SiC) at 850 °C, under a vacuum of 10-4/10-5 Torr. The proposed method is fast, simple and accurate enough from high (∼140°) to relatively low (∼10°) contact angles. Although the proposed method has been tested for metal-ceramic systems, it is of general application, so that it would be useful for any liquid-solid system. The method is applicable for any temperature, pressure and atmospheric experimental conditions employed, as well as for any chemical composition of liquid and solid. It is also useful for both low and high contact angles, as well as for reactive and non-reactive systems, as long as a photograph of a liquid drop resting on a flat solid surface is available for the studied system.