Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T12:30:12.882Z Has data issue: false hasContentIssue false

Prediction of amorphous structure and stability of P-N and N-CO extended solids under pressure

Published online by Cambridge University Press:  21 February 2019

I.G. Batyrev*
Affiliation:
US Army Research Laboratory, Aberdeen Proving Ground, MD21005
Get access

Abstract

The amorphous structures of poly-CO, P-N and N-CO extended solids at high pressures were predicted using density functional theory (DFT) and evolutionary algorithms employing variable and fixed concentrations of components methods. Compression of random network of poly-CO up to 45 GPa results in elimination of small rings of the amorphous network. The amorphous structure with stoichiometry N9P was found to be dynamically stable (no imaginary frequencies in phonon-dispersion curve), stable relative transformation to solid nitrogen and phosphorus, but metastable according to convex hull calculations. The amorphous structure of the N-CO extended solid was obtained with various concentrations of N atoms under isotropic compression up to 50 GPa and release of pressure down to 5 GPa calculated using DFT. The higher concentration of CO is found to be favourable for stabilization of an amorphous covalent N-C-O network consisting of chains and a cage of the network. Upon lowering the pressure and decomposition of the compressed extended solid, atoms are disconnected first from the ends of polymeric chains, while rings of random network are sustained almost intact. Results of a calculated Raman spectra are compared with available experimental results.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lipp, M.J., Evans, W.J., Baer, B.J., Yoo, C.S., Nat. Mat. 4, 211 (2005).CrossRefGoogle Scholar
Raza, Z., Pickard, C. J., Pinilla, C., and Saitta, A. M., Phys. Rev. Let. 111, 235501 (2013).CrossRefGoogle Scholar
Ceppatelli, M., Pagliai, M., Bini, R., and Jodl, H. J., J. Phys. Chem. C, 119, 130 (2015).CrossRefGoogle Scholar
Ciezak-Jenkins, J.A., Steele, B. A., Borstad, G. M., Oleynik, I. I., J. Chem. Phys. 146, 184309 (2017).CrossRefGoogle Scholar
Yoo, C.-S., Kim, M., Lim, J., Ryu, Y.J., and Batyrev, I. G., J. Phys. Chem. C, 122, 13054 (2018).CrossRefGoogle Scholar
Raza, Z., Errea, I., Oganov, A.R., Saitta, A.R., Sci. Rep. 4, 5889 (2014).CrossRefGoogle Scholar
Batyrev, I. G., Coleman, S. P., Ciezak-Jenkins, J. A., Stavrou, E., and Zaug, J. M., AIP Conference Proceedings 1979, 050003 (2018).CrossRefGoogle Scholar
Ng, K. and Vanderbilt, D., Phys. Rev. B 59, 10132 (1999).CrossRefGoogle Scholar
Tu, Y. and Tersoff, J., Phys. Rev. Lett. 84, 4393 (2000).CrossRefGoogle Scholar
Oganov, A.R., Glass, C.W., J. Chem. Phys. 124, 24 (2006).CrossRefGoogle Scholar
Kresse, G., Furthmuller, J., Comp Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
Grimme, S.J., J. Comput. Chem. 27, 1787 (2006).CrossRefGoogle Scholar
Hamann, D.R.; Schluter, M.; Chiang, C., Phys. Rev. Lett. 43, 1494 (1979).CrossRefGoogle Scholar
Segall, M.D., Lindan, P.J., Probert, M.J., Pickard, J.J., Hasnip, P.J., Clark, S.J., Payne, M.C., J. Phys.: Condens. 14, 2717 (2002).Google Scholar
Refson, K., Tulip, P.R.; Clark, S.J.. Phys. Rev. B 73, 155114 (2006).CrossRefGoogle Scholar
Batyrev, I.G., Mattson, W.D. and Rice, B.M., AIP Conf. Proc. 1426 1287 (2012).Google Scholar
Batyrev, I. G., Tuttle, B., Fleetwood, D. M., Schrimpf, R. D., Tsetseris, L., and Pantelides, S. T., Phys. Rev. Lett. 100, 105503 (2008).CrossRefGoogle Scholar
Batyrev, I.G., J. Phys. Chem. A 121, 638 (2017).CrossRefGoogle Scholar
Batyrev, I.G., AIP Conference Proceedings 1793, 070013 (2017)CrossRefGoogle Scholar