Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T20:01:40.719Z Has data issue: false hasContentIssue false

Preparation and structure of Na2Ag5Fe3(P2O7)4 -Ag metal composite: Insights on electrochemistry

Published online by Cambridge University Press:  16 January 2017

Yiman Zhang
Affiliation:
Department of Chemistry, Stony Brook University, NY 11794, USA
Amy C. Marschilok*
Affiliation:
Department of Chemistry, Stony Brook University, NY 11794, USA Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794
Esther S. Takeuchi*
Affiliation:
Department of Chemistry, Stony Brook University, NY 11794, USA Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794 Energy Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973
Kenneth J. Takeuchi*
Affiliation:
Department of Chemistry, Stony Brook University, NY 11794, USA Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794
Get access

Abstract

Ag7Fe3(P2O7)4 is a 3D structured material which has been recently studied as a possible cathode material for lithium batteries. Notably, Na7Fe3(P2O7)4 is reported to be a fast-ion conductor, yet poor electrical conductor. Here, partial replacement of Na+ for Ag+ yielded Na2Ag5Fe3(P2O7)4 pyrophosphate framework where the formation of Ag metal is proposed to increase the intrinsic low electrical conductivity of this polyanion electrode. Specifically, the Ag5Na2Fe3(P2O7)4 -Ag composite is synthesized via chemical reduction of Ag7Fe3(P2O7)4 using NaBH4. The occupancy of Ag+ and Na+ in each site was determined via Rietveld analysis of the diffraction pattern. Electrochemistry of the Ag5Na2Fe3(P2O7)4 -Ag metal composite was explored with voltammetry and galvanostatic charge/discharge cycling. The Ag5Na2Fe3(P2O7)4 -Ag metal composite electrodes displayed good rate capability assisted by the presence of Ag metal from the chemical reduction and in-situ electrochemical formation of a Ag conductive network.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armand, M. and Tarascon, J. M., Nature 451 (7179), 652-657 (2008).CrossRefGoogle Scholar
Tamaru, M., Chung, S. C., Shimizu, D., Nishimura, S.-I. and Yamada, A., Chem. Mater. 2013 (25), 25382543 (2013).CrossRefGoogle Scholar
Padhi, A. K., Nanjundaswamy, K. S. and Goodenough, J. B., J. Electrochem. Soc. 144 (4), 11881194 (1997).Google Scholar
Nishimura, S., Nakamura, M., Natsui, R. and Yamada, A., Journal of the American Chemical Society 2010 (132), 1359613597 (2010).CrossRefGoogle Scholar
Shimizu, D., Nishimura, S.-i., Barpanda, P. and Yamada, A., Chem. Mater. 24 (13), 25982603 (2012).CrossRefGoogle Scholar
Kim, H., Lee, S., Park, Y.-U., Kim, H., Kim, J., Jeon, S. and Kang, K., Chemi. Mater. 2011 (23), 39303937 (2011).CrossRefGoogle Scholar
Furuta, N., Nishimura, S.-i., Barpanda, P. and Yamada, A., Chem. Mater. 24 (6), 10551061 (2012).Google Scholar
Padhi, A. K., Nanjundaswamy, K. S., Masquelier, C., Okada, S. and Goodenough, J. B., J. Electrochem. Soc. 144 (5), 16091613 (1997).Google Scholar
Wurm, C., Morcrette, M., Rousse, G., Dupont, L. and Masquelier, C., Chem. Mater. 14 (6), 27012710 (2002).CrossRefGoogle Scholar
Cabana, J., Shirakawa, J., Nakayama, M., Wakihara, M. and Grey, C. P., J. Mater. Chem. A 21 (27), 1001210020 (2011).Google Scholar
Gao, H., Zhang, S. and Deng, C., Dalton Trans. 44 (1), 138145 (2015).CrossRefGoogle Scholar
Chung, S. Y., Bloking, J. T. and Chiang, Y. M., Nature Mater. 2002 (1) (2002).Google Scholar
Boyano, I., Blazquez, J. A., de Meatza, I., Bengoechea, M., Miguel, O., Grande, H., Huang, Y. H. and Goodenough, J. B., J. Power Sources 195 (16), 53515359 (2010).CrossRefGoogle Scholar
Liu, Z. L., Tay, S. W., Hong, L. A. and Lee, J. Y., Journal of Solid State Electrochemistry 15 (1), 205209 (2011).CrossRefGoogle Scholar
Gryzlov, D., Novikova, S., Kulova, T., Skundin, A. and Yaroslavtsev, A., Mater. Design 104, 95101 (2016).Google Scholar
Goktepe, H., Sahan, H. and Patat, S., Inter. J. Hydrogen Energy 41 (23), 97749779 (2016).Google Scholar
Takeuchi, E. S., Marschilok, A. C., Tanzil, K., Kozarsky, E. S., Zhu, S. and Takeuchi, K. J., Chem. Mater. 2009 (21) (20), 4934-4939 (2009).Google Scholar
Kirshenbaum, K. C., Bock, D. C., Brady, A. B., Marschilok, A. C., Takeuchi, K. J. and Takeuchi, E. S., Phys. Chem. Chem. Phys. 17 (17), 1120411210 (2015).Google Scholar
Zhang, Y., Kirshenbaum, K. C., Marschilok, A. C., Takeuchi, E. S. and Takeuchi, K. J., Chem. Mater. 2016 (28), 76197628 (2016).Google Scholar
Quarez, E., Mentre, O., Djellab, K. and Masquelier, C., New J. Chem. 34 (2), 287293 (2010).Google Scholar
Masquelier, C., Dyvoire, F. and Rodier, N., J. Solid State Chem. 95 (1), 156167 (1991).CrossRefGoogle Scholar
Quarez, E., Mentre, O., Oumellal, Y. and Masquelier, C., New J. Chem. 33 (5), 9981005 (2009).Google Scholar
Toby, B. H., J. Appl. Crystallogr. 34, 210213 (2001).CrossRefGoogle Scholar