Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-29T06:47:45.406Z Has data issue: false hasContentIssue false

Pump-probe thermoreflectance measurements of critical interfaces for thermal management of HAMR heads

Published online by Cambridge University Press:  25 July 2017

Gregory T. Hohensee*
Affiliation:
Western Digital Corporation, 1250 Reliance Way, Fremont CA94539, U.S.A.
Mousumi M. Biswas
Affiliation:
Western Digital Corporation, 1250 Reliance Way, Fremont CA94539, U.S.A.
Ella Pek
Affiliation:
Materials Science and Engineering, Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL61801, U.S.A.
Chris Lee
Affiliation:
Western Digital Corporation, 1250 Reliance Way, Fremont CA94539, U.S.A.
Min Zheng
Affiliation:
Western Digital Corporation, 1250 Reliance Way, Fremont CA94539, U.S.A.
Yingmin Wang
Affiliation:
Western Digital Corporation, 1250 Reliance Way, Fremont CA94539, U.S.A.
Chris Dames
Affiliation:
Mechanical Engineering, University of California Berkeley, Berkeley CA94720, U.S.A.
Get access

Abstract

For heat-assisted magnetic recording (HAMR) heads, a major reliability limiter is the peak near-field transducer (NFT) temperature. Since the NFT is nanoscale, heat sinking is controlled by materials and interfaces within a few 100 nm of the NFT. Heat sinks can be metallic to take advantage of the 10x-100x higher thermal boundary conductance (TBC) of metal/metal interfaces, versus nonmetal interfaces. Oxide formation at these interfaces can greatly decrease the TBC and contribute to NFT failure. Likewise, the thermal resistance of material between the NFT and media recording layer greatly influences the NFT operating temperature. Here we use pump-probe thermoreflectance techniques (FDTR, TDTR) to study metal-metal interfaces and detect partial oxidation of a buried metallic thin film, as well as evaluate the interface thermal conductance of amorphous-amorphous interfaces in a film stack representative of a HAMR head-media interface.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Shiroishi, Y., et al. ., IEEE Trans. Magn. 45, 38163822 (2009).CrossRefGoogle Scholar
Stipe, B.C. et al. ., Nat. Photon. 4, 484488 (2010).Google Scholar
Saga, H., Nemoto, H., Sukeda, H., Takahashi, M., Jap. J. Appl. Phys. 38, 1839 (1999).Google Scholar
Challener, W.A. et al. ., Nat. Photon. 3, 220224 (2009).Google Scholar
Monachon, C., Weber, L., Dames, C., Ann. Rev. Mat. Res. 46, 433463 (2016).Google Scholar
Kiely, J.D. et al. ., IEEE Trans. Magn. 53, 2 (2016).Google Scholar
Shukla, N.C. et al. ., Appl. Phys. Lett. 94, 081912 (2009).Google Scholar
Schmidt, A.J., Cheaito, R., Chiesa, M., Rev. Sci. Instrum. 80(9), 094901 (2009).Google Scholar
Tong, T., Karthik, J., Martin, L.W., Cahill, D.G., Phys. Rev. B 90, 094116 (2014).CrossRefGoogle Scholar
Regner, K.T., Majumdar, S., Malen, J.A., Rev. Sci. Instrum. 84(6), 064901 (2013).Google Scholar
Cahill, D.G., Rev. Sci. Instrum. 75, 51195122 (2004).CrossRefGoogle Scholar
Cahill, D.G. et al. ., J. Appl. Phys. 93, 793818 (2003).Google Scholar
Cahill, D.G. et al. ., Appl. Phys. Rev. 1, 011305 (2014).CrossRefGoogle Scholar
Feser, J.P. and Cahill, D.G., Rev. Sci. Instrum. 83, 124903 (2012).Google Scholar
Collins, K.C. et al. ., Rev. Sci. Instrum. 85, 124903 (2014).CrossRefGoogle Scholar
Zhu, J. et al. ., Appl. Phys. Lett. 108, 082101 (2016).Google Scholar
Wilson, R.B. et al. ., Phys. Rev. B 91, 115414 (2015).Google Scholar
Arunagiri, T.N. et al. ., Appl. Phys. Lett. 86, 083104 (2005).Google Scholar
Sharma, S. and Hines, L., IEEE Trans. Compon. Packag. Manuf. Technol. 6, 8992 (1983).Google Scholar
Wilson, R.B. and Cahill, D.G., Phys. Rev. Lett. 108, 255901 (2012).Google Scholar
Acharyya, R. et al. ., Appl. Phys. Lett. 94, 022112 (2009).Google Scholar
Mosso, N. et al. ., Nat. Nanotechnol., advance online publication (2017).Google Scholar
Cui, L. et al. ., Science 355, 6330:11921195 (2017)Google Scholar
Gundrum, B.C., Cahill, D.G., Averback, R.S., Phys. Rev. B 72, 245426 (2005).Google Scholar
Roufosse, M. and Klemens, P.G., Phys. Rev. B 7, 53795386 (1973).Google Scholar
Supplementary material: File

Hohensee supplementary material

Hohensee supplementary material 1

Download Hohensee supplementary material(File)
File 1.5 MB