Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T14:48:49.324Z Has data issue: false hasContentIssue false

Quantum Confinement Effect in the Absorption Spectra of Graphene Quantum Dots

Published online by Cambridge University Press:  16 January 2019

Leon Yang
Affiliation:
Pennsylvania State University, Altoona, PA, 16601, U. S. A.
Devon Reed
Affiliation:
Pennsylvania State University, Altoona, PA, 16601, U. S. A.
Kofi W. Adu*
Affiliation:
Pennsylvania State University, Altoona, PA, 16601, U. S. A. Pennsylvania State University, University Park, PA16802, U. S. A.
Ana Laura Elias Arriaga
Affiliation:
Pennsylvania State University, University Park, PA16802, U. S. A.
*
*(Email: cxa269@psu.edu)
Get access

Abstract

Our preliminary investigation of the absorption and the photoluminescence response of selectively separated graphene quantum dots using centrifugation indicate that the photoluminescence is more sensitive to the size of the quantum dot than the absorption. We observed ∼143nm blueshift from 623nm to 480nm in the visible region of the photoluminescence with increasing successive centrifugation (decreasing size) and not in the corresponding absorption spectra in the visible region. However, for the first time, we observed a blueshift in the absorption spectra in the UV regions that is tentatively attributed to quantum confinement. Further detailed work is underway to confirm the blueshift in the absorption and correlate with deep UV photoluminescence and morphological quantification of the quantum dots size distribution using high resolution transmission electron microscope.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fang, X. S., Bando, Y., Gautam, U.K, Y Zhai, T., Zeng, H. B., Xu, X. J., Liao, M. Y., Golberg, D, Critical review in Solid State and Materials Science, 34, 190-223 (2009)CrossRefGoogle Scholar
Joyce, H. J., Gao, Q., Tan, H. H., Jagadish, C., Kim, Y., Zou, J, Smith, L. M. Jackson, H. E., Yarrison-Rice, J. M., Parkinson, P., Johnston, M. B., Progress in Quantum Electronics, 35, 23-75 (2011)CrossRefGoogle Scholar
Sun, J. M., Han, M. M., Gu, Y, Yang, Z.X, Zeng, H. B., Advanced Optical Materials, 6, 2018, 1800256CrossRefGoogle Scholar
Choi, H. S., Shin, J. W., Hong, E. K., Hwang, I., Cho, W. J., Applied Physics Letters, 113, 243103 (2018)CrossRefGoogle Scholar
Musumeci, A., Gosztola, D, Schiller, T., Dimitrijevic, N. M., Mujica, V, Martin, D., Rajh, T., Journal of the American Chemical Society, 131, 6040 (2009)CrossRefGoogle Scholar
Zhang, T., Chen, C., Zhang, W. Y., Ye, Q. Fu, D. W., Journal of Physical chemistry C, 122, 2018, 20989CrossRefGoogle Scholar
Li, Y., Hu, Y., Zhao, Y., Shi, G., Deng, L., Hou, Y. and Qu, L., Adv. Mater., 23, 776780 (2011).CrossRefGoogle Scholar
Liu, F., Jang, M.-H., Ha, H. D., Kim, J.-H., Cho, Y.-H. and Seo, T. S., Adv. Mater., 25, 36573662 (2013).CrossRefGoogle Scholar
Tang, L., Ji, R., Cao, X., Lin, J., Jiang, H., Li, X., Teng, K. S., Luk, C. M., Zeng, S., Hao, J. and Lau, S. P., ACS Nano, 6, 51025110 (2012).CrossRefGoogle Scholar
Zhuo, S., Shao, M. and Lee, S.-T., ACS Nano, 2012, 6, 10591064.CrossRefGoogle Scholar
Zhu, S., Zhang, J., Tang, S., Qiao, C., Wang, L., Wang, H., Liu, X.,Li, B., Li, Y., Yu, W., Wang, X., Sun, H. and Yang, B., Adv. Funct. Mater., 22, 47324740 (2012).CrossRefGoogle Scholar
Liu, Q., Guo, B., Rao, Z., Zhang, B. and Gong, J. R., Nano Lett ., 13, 24362441 (2013).CrossRefGoogle Scholar
Tang, L., Ji, R., Li, X., Teng, K. S. and Lau, S. P., Part. Syst. Charact. , 30, 523531 (2013).CrossRefGoogle Scholar
Li, L. L., Ji, J., Fei, R., Wang, C.-Z., Lu, Q., Zhang, J.-R., Jiang, L.-P. and Zhu, J.-J., Adv. Funct. Mater., 22, 29712979 (2012).CrossRefGoogle Scholar
Tang, L., Ji, R., Li, X., Teng, K. S. and Lau, S. P., J. Mater. Chem. C, 1, 49084915 (2013).CrossRefGoogle Scholar
Tang, L., Ji, R., Cao, X., Lin, J., Jiang, H., Li, X., Teng, K. S., Luk, C. M., Zeng, S., Hao, J., Lau, S. P., ACS Nano, 6, 5102(2012)CrossRefGoogle Scholar
Tang, L., Ji, R.,Li, ‡ X., Bai, G., Liu, C. P., Hao, J., Lin, J., Jiang, H., Teng, K. S., Yang, Z., Lau, S. P., ACS Nano, 8, 6312(2012)CrossRefGoogle Scholar
Wang, X., Qu, K., Xu, B., Ren, J., Qu, X., J. Mater. Chem., , 21, 24452450 (2011)CrossRefGoogle Scholar
Zhu, H., Wang, X., Li, Y., Wang, Z., Yang, F., Yang, X., Chem. Commun., 34, 2009, 51185120CrossRefGoogle Scholar
Adu, K. W., Gutiérrez, H. R., Kim, U. J., Sumanasekera, G. U., Eklund, P. C., Nano Letters, 5, 409-414 (2005).CrossRefGoogle Scholar
Adu, K. W., Gutierrez, H. R., Kim, U. J., Eklund, P. C., Phys. Rev. B. 73, 155333 (2006).CrossRefGoogle Scholar