Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T01:37:54.042Z Has data issue: false hasContentIssue false

Rapid Synthesis of Monodispersed TATB Microparticles in Ionic Liquid Micelles

Published online by Cambridge University Press:  04 December 2018

Casey Karler
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, 87123
Leanne Alarid
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, 87123
David Rosenberg
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, 87123
Hongyou Fan*
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, 87123 The University of New Mexico Center for Micro-Engineered Materials, Albuquerque, New Mexico 87131 Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185
*
*(Email: hfan@sandia.gov)
Get access

Abstract

Controlling microscopic morphology of energetic materials is of significant interest for the improvement of their performance and production consistency. As an important insensitive high explosive material, triaminotrinitrobenzene (TATB) has attracted tremendous research effort for military grade explosives and propellants. In this study, a new, rapid and inexpensive synthesis method for monodispersed TATB microparticles based on micelle-confined precipitation was developed. Surfactant with proper hydrophilic-lipophilic balance value was found to be critical to the success of this synthesis. The morphology of the TATB microparticles can be tuned between quasi-spherical and faceted by controlling the speed of recrystallization.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ghosh, M., Venkatesan, V., Mandave, S., Banerjee, S., Sikder, N., Sikder, A. K. and Bhattacharya, B., Cryst. Growth Des. 14, 5053 (2014).CrossRefGoogle Scholar
Rice, S.F. and Simpson, R.L., The Unusual Stability of TATB: A Review of the Scientific Literature, Lawrence Livermore National Laboratory, Livermore, CA (1990).Google Scholar
Dobratz, B. M., The Insensitive High Explosive Triaminotrinitrobenzene (TATB): Development and Characterization, Los Alamos Scientific Laboratory, Los Alamos, NM (1995).Google Scholar
Voreck, W. E., Eberhardt, J. and Rezaie, H.A., U.S. Patent No. 5597974 A (28 Jan 1997)Google Scholar
Thorpe, R. and Feairheller, W. R., Development of Processes for Reliable Detonator Grade Very Fine Secondary Explosive Powders, Monsanto Research Corporation, Miamisburg, OH (1988).Google Scholar
Firsich, D. W., Thorpe, R. and Cox, L. A., TATB Purification and Particle Size Modification: An Evaluation of Processing Options, Mount Laboratory, Miamisburg, OH (1990).Google Scholar
Yang, G., Nie, F., Huang, H., Zhao, L. and Pang, W., Propellants Explos. Pyrotech. 31, 390 (2006).CrossRefGoogle Scholar
Han, T. Y., Pagoria, P. F., Gash, A. E., Maiti, A., Orme, C. A., Mitchell, A. R. and Fried, L. E., New J. Chem 33, 50 (2008).CrossRefGoogle Scholar
Foltz, M., Ornellas, D., Pagoria, P. and Mitchell, A., J. Mater. Sci. 31, 1893 (1996).CrossRefGoogle Scholar
Talawar, M. B., Agarwal, A. P., Anniyappan, M., Gore, G. M., Asthana, S. N. and Venugopalan, S., J. Hazard. Mater. 137, 1848 (2006).CrossRefGoogle Scholar
Yang, L., Ren, X. T., Li, T. C., Wang, S. W. and Zhang, T. L., Chin. J. Chem. 30, 293 (2012).CrossRefGoogle Scholar
Tan, X., Duan, X., Pei, C. and Xu, H., Nano 8, 573 (2013).CrossRefGoogle Scholar
Bai, F., Sun, Z., Wu, H., Haddad, R. E., Coker, E. N., Huang, J. Y., Rodriguez, M. A. and Fan, H., Nano Lett. 11, 5196 (2011).CrossRefGoogle Scholar
Zhong, Y., Wang, Z., Zhang, R., Bai, F., Wu, H., Haddad, R. and Fan, H., ACS Nano 8, 827 (2014).CrossRefGoogle Scholar
Bian, K., Alarid, L., Rosenberg, D. and Fan, H., MRS Adv. online, (2018).Google Scholar
Cady, H. and Larson, A., Acta Cryst. 18, 485 (1965).CrossRefGoogle Scholar
Zhang, H., Xu, J., Liu, Y., Huang, H. and Sun, J.. AIP Adv. 3, 092101 (2013).CrossRefGoogle Scholar
Filippini, G. and Gavezzotti, A., Chem. Phys. Lett. 231, 86 (1994).CrossRefGoogle Scholar
Yang, G., Nie, F., Huang, H., Zhao, L. and Pang, W., Propellants Explos. Pyrotech. 31, 390 (2006).CrossRefGoogle Scholar
Foltz, M., Maienschein, J. and Green, L., J. Mater. Sci. 31, 1741 (1996).CrossRefGoogle Scholar
Griffin, W., J. Soc. Cosm. Chem. 1, 311 (1949).Google Scholar
Griffin, W., J. Soc. Cosm. Chem. 5, 249 (1954).Google Scholar
Davies, J., A quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent, Proceedings of International Congress of Surface Activity, (1957), pp. 426.Google Scholar