No CrossRef data available.
Published online by Cambridge University Press: 10 April 2018
Vanadium dioxide thin films are considered as smart functional coatings for thermal shielding, and are attractive as a passive thermal shield for spacecrafts. In space they would, however, be subjected to bombardment by interstellar dust particles and electromagnetic radiation. Materials subjected to irradiation will suffer damages induced by the displacement cascades initiated by nuclear reaction. Such cosmic radiation can severely impact the structure and function of materials. To study this effect in the laboratory, we have deposited VO2 films on silicon wafers and exposed them to γ-radiation of doses up to 100 kGy by using a 60Co nuklid source with 1.17 and 1.33 MeV photon energy. We anticipate that the γ-radiation causes local structural perturbations which can amount to defects with a corresponding change in electronic structure and thermal shielding property. We report on the photo emission spectroscopy of gamma irradiated VO2 thin films.