Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T07:04:18.106Z Has data issue: false hasContentIssue false

Scanning-Probe-Induced Assembling of Gold Striations on Mono- and Bi-Layered MoS2 on SiO2

Published online by Cambridge University Press:  03 March 2020

Felix Trillitzsch
Affiliation:
Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
Arkadiusz Janas
Affiliation:
Marian Smoluchowski Institute of Physics, Jagiellonian University, Lojasiewicza 11, 30-348 Krakow, Poland
Alper Özogul
Affiliation:
Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
Christof Neumann
Affiliation:
Institute of Physical Chemistry, Friedrich Schiller University Jena, Lessingstraße 10, 07743 Jena, Germany
Antony George
Affiliation:
Institute of Physical Chemistry, Friedrich Schiller University Jena, Lessingstraße 10, 07743 Jena, Germany
Benedykt R. Jany
Affiliation:
Marian Smoluchowski Institute of Physics, Jagiellonian University, Lojasiewicza 11, 30-348 Krakow, Poland
Franciszek Krok
Affiliation:
Marian Smoluchowski Institute of Physics, Jagiellonian University, Lojasiewicza 11, 30-348 Krakow, Poland
Andrey Turchanin
Affiliation:
Institute of Physical Chemistry, Friedrich Schiller University Jena, Lessingstraße 10, 07743 Jena, Germany
Enrico Gnecco*
Affiliation:
Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
Get access

Abstract

Single crystal gold clusters (10 nm in size) have been collectively manipulated on mono- and bi-layered MoS2 islands (up to 20 µm) grown on SiO2 using AFM. On the monolayer the clusters tend to move in a direction corresponding to the zigzag alignment of the Mo and S atoms, and assemble into long striation patterns parallel to the scan direction. The distance between consecutive stripes is inversely proportional to the cluster concentration and size. A more detailed observation based on SEM shows that within each stripe the clusters remain separated by gaps of few nm in width possibly caused by electrostatic repulsion and/or the roughness of the SiO2 substrate (~2 nm). The stripes also proved to be thermally stable, preserving their superstructures up to 823 K. On the bilayer gold clusters are much less prone to move and assemble into stripes. These results suggest that the formation of nanostructures resulting from collective manipulation of metal clusters can be oriented by a properly chosen scan path in a rather straightforward way (as compared to one-by-one displacement of single clusters). The goal of forming µm-long but nm-thin wires with a geometrically defined shape could be easily reached with the use of smoother substrates or TMD materials with lesser charge transfer to metals adsorbed on them.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dietzel, D., Schwarz, U. D., Schirmeisen, A., Friction 2, 114 (2014).CrossRefGoogle Scholar
Junno, T., Deppert, K., Montelius, L., Samuelson, L., Appl. Phys. Lett. 66, 3627 (1995).CrossRefGoogle Scholar
Swart, I., Sonnleitner, T., Niedenführ, J., Repp, J., Nano Lett . 2, 1070 (2012).CrossRefGoogle Scholar
Bamidele, J., Lee, S. H., Kinoshita, Y., Turanský, R., Naitoh, Y., Li, Y.J., Sugawara, Y., Štich, I., Kantorovich, L., Nat. Comm. 5, 4476 (2014).CrossRefGoogle Scholar
Kawai, S., Foster, A., Federici Canova, F., Onodera, H., Kitamura, S., Meyer, E., Nat. Comm. 5, 4403 (2014).CrossRefGoogle Scholar
Chhowalla, M., Shin, H. S., Eda, G., Li, L. J., Loh, K. P., Zhang, H., Nat. Chem. 5, 263 (2013).CrossRefGoogle Scholar
Butler, S. Z., Hollen, S. M, Cao, L., ACS Nano 7, 2898 (2013).CrossRefGoogle Scholar
Buscema, M., Barkelid, M., Zwiller, V., van der Zant, H. S. J., Steele, G. A., Castellanos-Gomez, A., Nano Lett.13, 358 (2013).CrossRefGoogle Scholar
Li, M., Shi, J., Liu, L., Yu, P., Xi, N., Wang, Y., STAM 17, 189 (2016).Google Scholar
Trillitzsch, F., Guerra, R., Janas, A., Manini, N., Krok, F., Gnecco, E., Phys. Rev. B 98, 165417 (2018)CrossRefGoogle Scholar
Lee, C., Yan, H., Brus, L. E., Heinz, T. F., Hone, J., Ryu, S., ACS Nano 4, 2695 (2010).CrossRefGoogle Scholar
Wang, S., Rong, Y., Fan, Y., Pacios, M., Bhaskaran, H., He, K., Warner, J. H., Chem. Mater. 26 6371(2014).CrossRefGoogle Scholar
van der Zande, A. M., Huang, P. Y., Chenet, D. A., Berkelbach, T. C., You, Y. M., Lee, G. H., Heinz, T. F., Reichman, D. R., Muller, D. A., Hone, J. C., Nat. Mat. 12, 554 (2013).CrossRefGoogle Scholar
Ju, W., Li, T., Su, X., Li, H., Li, X., Ma, D., PCCP 19, 20735 (2017).CrossRefGoogle Scholar
Moreno-Moreno, M., Ares, P., Moreno, C., Zamora, F., Gomez-Navarro, C., Gomez-Herrero, J., Nano Letters 19, 5459 (2019).CrossRefGoogle Scholar