Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T07:41:20.628Z Has data issue: false hasContentIssue false

Selection criterion for {11 $\bar 2$ 2} twinning in rolled pure titanium

Published online by Cambridge University Press:  06 March 2017

Shun Xu
Affiliation:
Laboratoire d’Etude des Microstructures et de Mécanique des Matériaux (LEM3), CNRS UMR 7239,Université de Lorraine, F-57045 Metz, France Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures (DAMAS), Université de Lorraine, France
Christophe Schuman*
Affiliation:
Laboratoire d’Etude des Microstructures et de Mécanique des Matériaux (LEM3), CNRS UMR 7239,Université de Lorraine, F-57045 Metz, France Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures (DAMAS), Université de Lorraine, France
Jean-Sébastien Lecomte
Affiliation:
Laboratoire d’Etude des Microstructures et de Mécanique des Matériaux (LEM3), CNRS UMR 7239,Université de Lorraine, F-57045 Metz, France Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures (DAMAS), Université de Lorraine, France
Get access

Abstract

Two sets of rectangle samples with different length/width ratios were prepared and subjected to uniaxial compression in the normal direction of rolled pure titanium. Results from Electron backscatter diffraction (EBSD) show that the produced {11 $\bar 2$ 2} twins in the two sets of samples exhibit different orientations, which is related to the variant selection of twinning behaviors with respect to the length/width ratios of the samples. The variant selection criterion is investigated in terms of the Schmid factors and contribution of the active twins to external strain, which indicates that the variants resulting in the elongation along the longer direction of the sample were unfavorable.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Christian, J.W., Mahajan, S., Prog Mater Sci., 39 (1995) 1157.Google Scholar
Barnett, M.R., Keshavarz, Z., Beer, A.G., Atwell, D., Acta Mater., 52 (2004) 50935103.Google Scholar
Stanford, N., Carlson, U., Barnett, M.R., Metall Mater Trans A., 39 (2008) 934944.CrossRefGoogle Scholar
Ghaderi, A., Barnett, M.R., Acta Mater., 59 (2011) 78247839.Google Scholar
Cepeda-Jiménez, C.M., Molina-Aldareguia, J.M., Pérez-Prado, M.T., Acta Mater., 84 (2015) 443456.CrossRefGoogle Scholar
Cepeda-Jiménez, C.M., Molina-Aldareguia, J.M., Pérez-Prado, M.T., Acta Mater., 88 (2015) 232244.Google Scholar
Santhanam, A.T., Reed-Hill, R.E., Metall Trans., 2 (1971) 26192622.CrossRefGoogle Scholar
Hall, E.O., Proc. Phys. Soc. B, 64 (1953) 747753.Google Scholar
Petch, N.J., J. Iron Steel Inst, 174 (1953) 2528.Google Scholar
El-Danaf, E., Kalidindi, S.R., Doherty, R.D., Metall Mater Trans A., 30A (1999) 12231233.Google Scholar
Meyers, M.A., Vohringer, O., Lubarda, V.A., Acta Mater., 49 (2001) 40254039.Google Scholar
Partridge, P., Metall Rev., 12 (1967) 169194.Google Scholar
Yoo, M., Metallurgical Transactions A, 12 (1981) 409418.Google Scholar
Xu, S., Schuman, C., Lecomte, J.-S., Scr Mater., 116 (2016) 152156.Google Scholar
Tirry, W., Bouvier, S., Benmhenni, N., Hammami, W., Habraken, A.M., Coghe, F., Schryvers, D., Rabet, L., Mater Charact., 72 (2012) 2436.Google Scholar
Capolungo, L., Beyerlein, I., Phys Rev B., 78 (2008) 024117.Google Scholar
Jin, S., Marthinsen, K., Li, Y., Acta Mater., 120 (2016) 403414.Google Scholar
Lane, N.J., Simak, S.I., Mikhaylushkin, A.S., Abrikosov, I.A., Hultman, L., Barsoum, M.W., Phys Rev B., 84 (2011) 184101.CrossRefGoogle Scholar
Wang, L., Barabash, R., Bieler, T., Liu, W., Eisenlohr, P., Metall Mater Trans A., 44 (2013) 36643674.Google Scholar
Wang, J., Beyerlein, I., Hirth, J., Tomé, C., Acta Mater., 59 (2011) 39904001.Google Scholar
Wang, S., Zhang, Y., Schuman, C., Lecomte, J.-S., Zhao, X., Zuo, L., Philippe, M.-J., Esling, C., Acta Mater., 82 (2015) 424436.Google Scholar
Lederich, R.J., Sastry, S.M.L., O’neal, J.E., Rath, B.B., Mater Sci Eng., 33 (1978) 183188.Google Scholar
Tomé, C.N., Lebensohn, R.A., Kocks, U.F., Acta Metall., 39 (1991) 26672680.Google Scholar
Yu, Q., Shan, Z.W., Li, J., Huang, X., Xiao, L., Sun, J., Ma, E., Nature., 463 (2010) 335338.Google Scholar
Ye, J., Mishra, R.K., Sachdev, A.K., Minor, A.M., Scr Mater., 64 (2011) 292295.Google Scholar
Fundenberger, J.-J., Beausir, B., Université de Lorraine - Metz, 2015, JTEX - Software for Texture Analysis, <http://jtex-software.eu/>..>Google Scholar
Pochettino, A.A., Gannio, N., Edwards, C.V., Penelle, R., Scr Metall., 27 (1992) 18591863.Google Scholar
Wang, Y.N., Huang, J.C., Mater Chem Phys., 81 (2003) 1126.Google Scholar
Jonas, J.J., Mu, S., Al-Samman, T., Gottstein, G., Jiang, L., Martin, Ė., Acta Mater., 59 (2011) 20462056.Google Scholar
Shi, Z.-Z., Zhang, Y., Wagner, F., Juan, P.-A., Berbenni, S., Capolungo, L., Lecomte, J.-S., Richeton, T., Acta Mater., 83 (2015) 1728.Google Scholar
Martin, É., Capolungo, L., Jiang, L., Jonas, J.J., Acta Mater., 58 (2010) 39703983.Google Scholar