Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T02:13:24.940Z Has data issue: false hasContentIssue false

Self-organized Formation of Multilayer Structure in a High Nitrogen Stainless Steel during Solution Treatment

Published online by Cambridge University Press:  26 January 2019

Rui Zhou
Affiliation:
College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu, P R China
Xuan Wang
Affiliation:
College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu, P R China
Cheng Liu*
Affiliation:
College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu, P R China
Derek O. Northwood
Affiliation:
Mechanical, Auto and Materials Engineering, University of Windsor, Windsor, Ontario, Canada
*
Get access

Abstract

Compared with traditional stainless steels, high nitrogen stainless steels (HNSS), have been widely used due to their high strength, toughness along with excellent corrosion resistance and low cost, formed by partial replacement of Ni (austenite-forming element) by N. The evolution of the microstructure of a Cr19Mn19Mo2N0.7 stainless steel is investigated after solution treatment at 1010, 1060, 1200 or 1250°C for 30min. A complex multilayer structure has been found under a negative pressure vacuum. A white ferritic layer at the surface is formed, and a subsurface layer with full austenitic structure and a bulk microstructure comprising of austenite and ferrite are detected. With increasing solution temperature, the surface layer thickness increases. The formation of the multilayer structure is attributed to an outward diffusion, a diffusive retardation and an abnormal accumulation of nitrogen during solution treatment.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Li, H. B., Jiang, Z.H., Zhang, Z. R., Cao, Y., Yang, Y., Int. J. Miner. Metall., 16 (6), 654-660 (2009).Google Scholar
Erneman, J., Schwind, M., Liu, P., Acta Mater., 52 (14), 4337-4350 (2004).CrossRefGoogle Scholar
Jiang, Z. H., Zhang, Z.R., Li, H. B., Int. J. Miner. Metall. Mater., 17(6), 729-732 (2010).CrossRefGoogle Scholar
Cojocaru, V. D., Serban, N., Angelescu, M. L., Materialwissenschaft Und Werkstofftechnik, 49, 530-537 (2018).CrossRefGoogle Scholar
Karthik, B., Veerababu, R., Satyanarayana, D. V. V., Met. Mater. Int., 22 (2), 413-423 (2016).CrossRefGoogle Scholar
Rezayat, M., Mirzadeh, H., Parsa, M. H., Metal. & Mater. Trans. A, 47 (2), 641-648 (2015).CrossRefGoogle Scholar
Mukherjee, M., Pal, T. K., Acta Metall., 26 (2), 206-216 (2013).CrossRefGoogle Scholar
Aghuy, A. A., Zakeri, A., Moayed, M. H., Mazinani, M., Corrosion Sci., 94, 368-376 (2015).CrossRefGoogle Scholar
Hwang, H., Park, Y., Mater. Trans., 50 (6), 1548-155 (2009).CrossRefGoogle Scholar
Yang, Y. H., Yan, B., Wang, J., Yin, J. L., J. Alloys Compd., 509 (36), 8870-8879 (2011).CrossRefGoogle Scholar
Ren, X. P., Li, S. X., Xiong, Z. P., J. of Manufacturing Processes, 34, 215-224 (2018).CrossRefGoogle Scholar
Lo, K. H., Kwok, C. T., Wang, K. Y., Wear, 392–393, 159-166 (2017).CrossRefGoogle Scholar
Wang, X. Y., Luo, J. M., Huang, L. Q, CAMMT 2017, IOP Publishing, IOP Conf. Series: Materials Science and Engineering 242 (2017) 012061 doi:10.1088/1757-899X/242/1/012061.Google Scholar
Wang, D X., Zhou, R., Ding, G W., Liu, C., Key Eng. Mater., 775, 454-458 (2018).CrossRefGoogle Scholar
Reis, R. F., Maliska, A. M., Borges, P. C., J. Mater. Sci., 46 (3), 846-854 (2010).CrossRefGoogle Scholar
Zhao, F., Wu, M., Jiang, B.. Zhao, C. L., Mater. Charact., 140, 217-224 (2018).CrossRefGoogle Scholar
Berns, H., Siebert, S., ISIJ International, 36 (7), 927-931(1996).CrossRefGoogle Scholar
Machado, I. F., Padilha, A. F., Steel Research, 67 (7), 285-290 (1996).CrossRefGoogle Scholar
Wang, Q., Ren, Y., Yao, C., Yang, K., Misa, R. D., Metall. Mater. Trans. A, 46 (12), 5537-5545 (2015).CrossRefGoogle Scholar
Widi, K. A., Wardana, W., Suprapto, W., Int. Review. Mech. Eng., 11 (8), 613-618 (2017).Google Scholar
Sueyoshi, H., Hamaishi, K., Nakamura, Y., J. Kiyofuji. Mater. Trans., 37: 150-156 (1996).CrossRefGoogle Scholar
Lo, K. H., Shek, C. H., Lai, J. K. L., Mater. Sci. Eng. R, 65, 39-104 (2009).CrossRefGoogle Scholar