Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T06:39:16.089Z Has data issue: false hasContentIssue false

Silicon/polypyrrole nanocomposite wrapped with graphene for lithium ion anodes

Published online by Cambridge University Press:  05 June 2017

Changling Li*
Affiliation:
Materials Science and Engineering Program, University of California Riverside, CA92521
Chueh Liu
Affiliation:
Materials Science and Engineering Program, University of California Riverside, CA92521
Zafer Mutlu
Affiliation:
Materials Science and Engineering Program, University of California Riverside, CA92521
Yiran Yan
Affiliation:
Materials Science and Engineering Program, University of California Riverside, CA92521
Kazi Ahmed
Affiliation:
Department of Electrical and Computer Engineering, University of California, Riverside, CA92521
Mihri Ozkan
Affiliation:
Department of Electrical and Computer Engineering, University of California, Riverside, CA92521
Cengiz S. Ozkan
Affiliation:
Materials Science and Engineering Program, University of California Riverside, CA92521 Department of Mechanical Engineering, University of California Riverside, CA92521
*
*(Email: cli020@ucr.edu)

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Herein, silicon nanoparticles (SiNPs) are coated with conducting hydrogel and wrapped with reduced graphene oxide (rGO) sheets via a facile and scalable solution-based sol-gel process. The in-situ polymerized polypyrrole (PPy) hydrogel forms an interconnected three-dimensional (3D) fiber matrix. Amine and hydroxyl groups from the hydrogel assist the encapsulation of the SiNPs through hydrogen bonding. The electro-conductive PPy fiber network and the wrapping of rGO offer efficient electron and ion transport pathways. The PPy/SiNPs/rGO electrodes can produce highly reversible capacities of 1312, 1285 and 1066 mAh g-1 at 100, 250 and 500 cycles at a current density of 2.1 A g-1, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

References

REFERENCES

Liu, C., Li, C., Ahmed, K., Mutlu, Z., Ozkan, C.S., Ozkan, M., Sci. Rep. 6, 29183 (2016).Google Scholar
Goodenough, J.B., Park, K.S., J. Am Chem. Soc. 135, 1167 (2013).Google Scholar
Liu, C., Li, C., Ahmed, K., Wang, W., Lee, I., Zaera, F., Ozkan, C.S., Ozkan, M., RSC Adv. 6, 81712 (2016).Google Scholar
Liu, C., Li, C., Ahmed, K., Wang, W., Lee, I., Zaera, F., Ozkan, C.S., Ozkan, M., Adv. Mater. Interfaces 3, 1500503 (2016).Google Scholar
Zhou, X., Yin, Y.-X., Wan, L.-J., Guo, Y.-G., Chem. Commun. 48, 2198 (2012).Google Scholar
Park, O.K., Cho, Y., Lee, S., Yoo, H.-C., Song, H.-K., Cho, J., Energy Environ. Sci. 4, 1621 (2011).Google Scholar
Li, C., Liu, C., Wang, W., Bell, J., Mutlu, Z., Ahmed, K., Ye, R., Ozkan, M., Ozkan, C.S., Chem. Commun. 52, 11398 (2016).Google Scholar
Liu, C., Wang, C.-C., Kei, C.-C., Hsueh, Y.-C., Perng, T.-P., Small 5, 1535 (2009).Google Scholar
Guo, L., Qin, X., Zaera, F., ACS Appl. Mater. Interfaces 8, 6293 (2016).Google Scholar
Guo, L., Lee, I., Zaera, F., ACS Appl. Mater. Interfaces 8, 19836 (2016).Google Scholar
Li, C., Chartuprayoon, N., Bosze, W., Low, K., Lee, K.H., Nam, J., Myung, N.V., Electroanalysis 26, 711 (2014).Google Scholar
Karen, L., Nicha, C., Cristina, E., Changling, L., Wayne, B., Nosang, V.M., Jin, N., Nanotechnology 25, 115501 (2014).Google Scholar
Maher, M.J., Rettner, C.T., Bates, C.M., Blachut, G., Carlson, M.C., Durand, W.J., Ellison, C.J., Sanders, D.P., Cheng, J.Y., Willson, C.G., ACS Appl. Mater. Interfaces 7, 3323 (2015).Google Scholar
Guo, L., Zaera, F., Nanotechnology 25, 504006 (2014).Google Scholar
Liu, N., Lu, Z., Zhao, J., McDowell, M.T., Lee, H.-W., Zhao, W., Cui, Y., Nat Nano 9, 187 (2014).Google Scholar
Kim, H., Han, B., Choo, J., Cho, J., Angew. Chem., Int. Ed. 47, 10151 (2008).Google Scholar
Wang, W., Favors, Z., Li, C., Liu, C., Ye, R., Fu, C., Bozhilov, K., Guo, J., Ozkan, M., Ozkan, C.S., Sci. Rep. 7, 44838 (2017).Google Scholar
Kannan, A.G., Kim, S.H., Yang, H.S., Kim, D.-W., RSC Adv. 6, 25159 (2016).Google Scholar
Chang, J., Huang, X., Zhou, G., Cui, S., Hallac, P.B., Jiang, J., Hurley, P.T., Chen, J., Adv. Mater. 26, 758 (2014).Google Scholar
Ni, T., Xu, L., Sun, Y., Yao, W., Dai, T., Lu, Y., ACS Sustain Chem Eng 3, 862 (2015).Google Scholar
Low, K., Horner, C.B., Li, C., Ico, G., Bosze, W., Myung, N.V., Nam, J., Sensor Actuat B: Chem 207, Part A, 235 (2015).Google Scholar
Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., Tour, J.M., ACS Nano 4, 4806 (2010).Google Scholar
Liu, C., Li, C., Wang, W., Ozkan, M., Ozkan, C.S., Energy Technol. 5, 422 (2017).Google Scholar
Wang, J.-G., Wei, B., Kang, F., RSC Adv. 4, 199 (2014).Google Scholar
Bay, H.H., Ghazinejad, M., Penchev, M., Ruiz, I., Mutlu, Z., Ozkan, M., Ozkan, C.S., MRS Proc. 1451, 51 (2012).Google Scholar
Li, C., Liu, C., Wang, W., Mutlu, Z., Bell, J., Ahmed, K., Ye, R., Ozkan, M., Ozkan, C.S., Sci. Rep. 7, 917 (2017).Google Scholar
Supplementary material: PDF

Li supplementary material

Li supplementary material 1

Download Li supplementary material(PDF)
PDF 143.4 KB