Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T11:31:46.781Z Has data issue: false hasContentIssue false

Sonochemical Functionalization of Boron Nitride Nanomaterials

Published online by Cambridge University Press:  27 December 2019

Haley B. Harrison
Affiliation:
The University of North Carolina at Greensboro1, North Carolina Agricultural and Technical State University
Jeffrey R. Alston*
Affiliation:
The Joint School of Nanoscience and Nanoengineering Greensboro, North Carolina
*
Get access

Abstract

Boron nitride nanotubes (BNNTs) and hexagonal boron nitride platelets (h-BNs) have received considerable attention for aerospace insulation applications due to their exceptional chemical and thermal stability. Presently, making BN nanomaterials compatible with polymer and composite matrices is challenging. Due to their inert and highly stable structure, h-BN and BNNTs are difficult to covalently functionalize. In this work, we present a novel sonochemical technique that enables covalent attachment of fluoroalkoxy substituents to the surface of BN nanomaterials in a controlled and metered process. Covalent functionalization is confirmed via colloidal stability analysis, FT-IR, and x-ray photoelectron spectroscopy (XPS).

Type
Articles
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chopra, N.G., Luyken, R.J., Cherrey, K., Crespi, V.H., Cohen, M.L., Louie, S.G. and Zettl, A.: Boron Nitride Nanotubes. Science 269, 966 (1995).10.1126/science.269.5226.966CrossRefGoogle ScholarPubMed
Maryam Anafcheh, E.A., Zahedi, Mansour: Addition of borazine to boron nitride nanotubes: [2+2] cycloaddition or bond cleavage. Chemical Monthly 150, 1019 (2019).10.1007/s00706-019-2358-4CrossRefGoogle Scholar
Zhuoyuan Zheng, M.C., and Li, Bin: Surface modification of hexagonal boron nitride nanomaterials: a review. J Mater Sci, 66 (2018).Google Scholar
Liao, Y., Chen, Z., Connell, J.W., Fay, C.C., Park, C., Kim, J.-W. and Lin, Y.: Chemical Sharpening, Shortening, and Unzipping of Boron Nitride Nanotubes. Advanced Functional Materials 24, 4497 (2014).10.1002/adfm.201400599CrossRefGoogle Scholar
Zheng, Z., M.C. and a.B.L. : Surface modification of hexagonal boron nitride nanomaterials: a review. Journal of Materials Science 53, 66 (2018).10.1007/s10853-017-1472-0CrossRefGoogle Scholar
Qunhong Weng, X.W., Wang, Xi, Yoshio Bando and Dmitri Golberg: Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chemical Society Reviews 45, 3989 (2016).10.1039/C5CS00869GCrossRefGoogle ScholarPubMed
Shin, H., Guan, J., Zgierski, M.Z., Kim, K.S., Kingston, C.T. and Simard, B.: Covalent Functionalization of Boron Nitride Nanotubes via Reduction Chemistry. ACS Nano 9, 12573 (2015).CrossRefGoogle ScholarPubMed
Lee, C.H., S.B. , B.T. , N.Y. , D.Z. and a.Y.K. Yap: Boron Nitride Nanotubes: Recent Advances in Their Synthesis, Functionalization, and Applications. Molecules 21 (2016).CrossRefGoogle ScholarPubMed
Zhi, C., Bando, Y., Tang, C., Honda, S., Sato, K., Kuwahara, H. and Golberg, D.: Purification of Boron Nitride Nanotubes through Polymer Wrapping. The Journal of Physical Chemistry B 110, 1525 (2006).CrossRefGoogle ScholarPubMed
Sainsbury, T., Satti, A., May, P., O’Neill, A., Nicolosi, V., Gun’ko, Y.K. and Coleman, J.N.: Covalently Functionalized Hexagonal Boron Nitride Nanosheets by Nitrene Addition. Chemistry – A European Journal 18, 10808 (2012).10.1002/chem.201201734CrossRefGoogle ScholarPubMed
Sainsbury, T., Satti, A., May, P., Wang, Z., McGovern, I., Gun’ko, Y.K. and Coleman, J.: Oxygen Radical Functionalization of Boron Nitride Nanosheets. Journal of the American Chemical Society 134, 18758 (2012).10.1021/ja3080665CrossRefGoogle ScholarPubMed
Zhi, Y.B. C. Y., Terao, T., Tang, C. C., Kuwahara, H., Golberg, D.: Chemically Activated Boron Nitride Nanotubes. Chemistry - An Asian Journal 4, 1536 (2009).CrossRefGoogle ScholarPubMed
Cuiping Yu, J.Z., Tian, Wei, Xiaodong Fan and Yagang Yao: Polymer composites based on hexagonal boron nitride and their application in thermally conductive composites. Royal Society of Chemistry Advances 8 (2018).Google Scholar
Ikuno, T., Sainsbury, T., Okawa, D., Fréchet, J.M.J. and Zettl, A.: Amine-functionalized boron nitride nanotubes. Solid State Communications 142, 643 (2007).10.1016/j.ssc.2007.04.010CrossRefGoogle Scholar
Kim, D., Nakajima, S., Sawada, T., Iwasaki, M., Kawauchi, S., Zhi, C., Bando, Y., Golberg, D. and Serizawa, T.: Sonication-assisted alcoholysis of boron nitride nanotubes for their sidewalls chemical peeling. Chemical Communications 51, 7104 (2015).10.1039/C5CC00388ACrossRefGoogle ScholarPubMed
Fisher, T.: XPS Knowledge Base, in Thermo Fisher Online Resource.Google Scholar
Harrison, H., Lamb, J.T., Nowlin, K.S., Guenthner, A.J., Ghiassi, K.B., Kelkar, A.D. and Alston, J.R.: Quantification of hexagonal boron nitride impurities in boron nitride nanotubes via FTIR spectroscopy. Nanoscale Advances, 1693 (2019).CrossRefGoogle Scholar