Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T11:47:50.277Z Has data issue: false hasContentIssue false

Strategies for Improving Efficiency and Stability of Perovskite Solar Cells

Published online by Cambridge University Press:  10 July 2017

Xiaoli Zheng
Affiliation:
College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, China. Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
Yang Bai
Affiliation:
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
Shuang Xiao
Affiliation:
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
Xiangyue Meng
Affiliation:
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
Teng Zhang
Affiliation:
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
Shihe Yang*
Affiliation:
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
*
*corresponding author email: chsyang@ust.hk
Get access

Abstract

Perovskite solar cells (PSCs) based on organometal halide light absorbers have hit the limelight in recent years owing to their low temperature solution processability, material abundance and rapidly rising efficiency. To rival the leading photovoltaic technologies, efficiency and long-term stability of PSCs represent two prime facets of the challenges currently facing the research community. Herein we summarize the strategies for improving efficiency and stability of PSCs by drawing on our recent work. Emphasis is given to the importance of perovskite film growth, electron/hole transport materials and interface materials in cell performance. We also discuss possible degradation mechanisms of PSCs.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Journal of the American Chemical Society 2009, 131, 6050.CrossRefGoogle Scholar
Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643.CrossRefGoogle Scholar
Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395.CrossRefGoogle Scholar
Liu, D. Y.; Kelly, T. L. Nature Photonics 2014, 8, 133.CrossRefGoogle Scholar
Seo, J.; Noh, J. H.; Seok, S. I. Accounts of Chemical Research 2016, 49, 562.CrossRefGoogle Scholar
Xing, G. C.; Mathews, N.; Sun, S. Y.; Lim, S. S.; Lam, Y. M.; Gratzel, M.; Mhaisalkar, S.; Sum, T. C. Science 2013, 342, 344.Google Scholar
Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Science 2015, 348, 1234.Google Scholar
Son, D.-Y.; Lee, J.-W.; Choi, Y. J.; Jang, I.-H.; Lee, S.; Yoo, P. J.; Shin, H.; Ahn, N.; Choi, M.; Kim, D.; Park, N.-G. Nature Energy 2016, 1, 16081.Google Scholar
Li, X.; Bi, D.; Yi, C.; Décoppet, J.-D.; Luo, J.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M. Science 2016.Google Scholar
Jung, H. S.; Park, N. G. Small 2015, 11, 10.Google Scholar
Tang, Z.; Tanaka, S.; Ito, S.; Ikeda, S.; Taguchi, K.; Minemoto, T. Nano Energy 2016, 21, 51.CrossRefGoogle Scholar
Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nature Materials 2014, 13, 897.CrossRefGoogle Scholar
Zhou, Y.; Yang, M.; Wu, W.; Vasiliev, A. L.; Zhu, K.; Padture, N. P. Journal of Materials Chemistry A 2015, 3, 8178.Google Scholar
Xiao, Z.; Dong, Q.; Bi, C.; Shao, Y.; Yuan, Y.; Huang, J. Advanced Materials 2014, 26, 6503.CrossRefGoogle Scholar
Zhou, Z.; Wang, Z.; Zhou, Y.; Pang, S.; Wang, D.; Xu, H.; Liu, Z.; Padture, N. P.; Cui, G. Angewandte Chemie International Edition 2015, 54, 9705.Google Scholar
Liu, J.; Gao, C.; He, X.; Ye, Q.; Ouyang, L.; Zhuang, D.; Liao, C.; Mei, J.; Lau, W. ACS applied materials & interfaces 2015, 7, 24008.CrossRefGoogle Scholar
Yu, Z.; Sun, L. Advanced Energy Materials 2015, 5, 1500213.Google Scholar
Bai, Y.; Chen, H.; Xiao, S.; Xue, Q.; Zhang, T.; Zhu, Z.; Li, Q.; Hu, C.; Yang, Y.; Hu, Z.; Huang, F.; Wong, K. S.; Yip, H.-L.; Yang, S. Advanced Functional Materials 2016, 29502958.Google Scholar
Chen, W.; Wu, Y.; Yue, Y.; Liu, J.; Zhang, W.; Yang, X.; Chen, H.; Bi, E.; Ashraful, I.; Gratzel, M.; Han, L. Science 2015, 350, 944.CrossRefGoogle Scholar
Leo, K. Nature Nanotechnology 2015, 10, 574.Google Scholar
Leijtens, T.; Eperon, G. E.; Noel, N. K.; Habisreutinger, S. N.; Petrozza, A.; Snaith, H. J. Advanced Energy Materials 2015, 5, 1500963.CrossRefGoogle Scholar
Berhe, T. A.; Su, W.-N.; Chen, C.-H.; Pan, C.-J.; Cheng, J.-H.; Chen, H.-M.; Tsai, M.-C.; Chen, L.-Y.; Dubale, A. A.; Hwang, B.-J. Energy & Environmental Science 2016, 9, 323.CrossRefGoogle Scholar
Bai, Y.; Xiao, S.; Hu, C.; Zhang, T.; Meng, X.; Li, Q.; Yang, Y.; Wong, K. S.; Chen, H.; Yang, S. Nano Energy 2017, 34, 58.CrossRefGoogle Scholar
Xiao, S.; Bai, Y.; Meng, X.; Zhang, T.; Chen, H.; Zheng, X.; Hu, C.; Qu, Y.; Yang, S. Advanced Functional Materials 2017, 27, 1604944.Google Scholar
Meng, X.; Bai, Y.; Xiao, S.; Zhang, T.; Hu, C.; Yang, Y.; Zheng, X.; Yang, S. Nano Energy 2016, 30, 341.Google Scholar
Seo, J.; Park, S.; Chan Kim, Y.; Jeon, N. J.; Noh, J. H.; Yoon, S. C.; Seok, S. I. Energy & Environmental Science 2014, 7, 2642.Google Scholar
Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H. Energy & Environmental Science 2015, 8, 1602.CrossRefGoogle Scholar
Zhao, D.; Zhu, Z.; Kuo, M.-Y.; Chueh, C.-C.; Jen, A. K. Y. Angewandte Chemie International Edition 2016, 55, 8999.CrossRefGoogle Scholar
Zheng, X.; Chen, H.; Li, Q.; Yang, Y.; Wei, Z.; Bai, Y.; Qiu, Y.; Zhou, D.; Wong, K. S.; Yang, S. Nano Letters 2017, article ASAP, DOI: 10.1021/acs.nanolett.7b00200.Google Scholar
Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Gratzel, M. Journal of the American Chemical Society 2012, 134, 17396.Google Scholar
Hao, F.; Stoumpos, C. C.; Liu, Z.; Chang, R. P.; Kanatzidis, M. G. Journal of the American Chemical Society 2014, 136, 16411.CrossRefGoogle Scholar
Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y.; Gratzel, M.; Han, H. Science 2014, 345, 295.Google Scholar
Wei, Z.; Yan, K.; Chen, H.; Yi, Y.; Zhang, T.; Long, X.; Li, J.; Zhang, L.; Wang, J.; Yang, S. Energy & Environmental Science 2014, 7, 3326.CrossRefGoogle Scholar
Wei, Z.; Zheng, X.; Chen, H.; Long, X.; Wang, Z.; Yang, S. Journal of Materials Chemistry A 2015, 3, 16430.Google Scholar
Liu, L.; Mei, A.; Liu, T.; Jiang, P.; Sheng, Y.; Zhang, L.; Han, H. Journal of the American Chemical Society 2015, 137, 1790.Google Scholar
Zhang, T.; Meng, X.; Bai, Y.; Xiao, S.; Hu, C.; Yang, Y.; Chen, H.; Yang, S. Journal of Materials Chemistry A 2017, 5, 1103.Google Scholar
Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Gratzel, M. Energy & Environmental Science 2016, 9, 1989.CrossRefGoogle Scholar
Wang, D.; Wright, M.; Elumalai, N. K.; Uddin, A. Solar Energy Materials and Solar Cells 2016, 147, 255.CrossRefGoogle Scholar
Tiep, N. H.; Ku, Z.; Fan, H. J. Advanced Energy Materials 2016, 6, 1501420.Google Scholar