Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T15:12:09.535Z Has data issue: false hasContentIssue false

Structural Characterization and computational approach to doped hafnium oxide nano crystals for thermo and photoluminescence applications

Published online by Cambridge University Press:  08 September 2017

Radamés R. M.*
Affiliation:
Instituto de Investigaciones en Materiales, UNAM, Av. Universidad 3000, Circuito Exterior S/N, Delegación Coyoacán, C.P.04510Ciudad Universitaria, Ciudad de México Facultad de Ciencias, UNAM, Av. Universidad 3000, Copilco, 04510Ciudad de México, México
Alejandro V. Z.
Affiliation:
Instituto de Investigaciones en Materiales, UNAM, Av. Universidad 3000, Circuito Exterior S/N, Delegación Coyoacán, C.P.04510Ciudad Universitaria, Ciudad de México
M. Romero
Affiliation:
Facultad de Ciencias, UNAM, Av. Universidad 3000, Copilco, 04510Ciudad de México, México
Get access

Abstract

Doped hafnium oxide (X-HfO2, X= Eu, Tb, Dy) thin films were deposited by experimental ultrasonic spray pyrolysis process. Doped Hf nano crystal (nc-X-Hf) embebed in the HfO2 matrix were obtained. The process was made at substrate temperature between 300 °C and 550 °C, showing at this higher temperature the monoclinic phase, which improve the dopants incorporation. Computational simulations were made to analyze molecular dynamics in advance to improve physical and chemical properties. Energy relaxation, and charge distribution behaviour demonstrated an atomic re-arranged to form the nano clusters of 5nm to 10 nm diameter. Vibrational modes were calculated. Photoluminescence (PL) spectra were obtained, as dopant function. Atomic Force Microscopy (AFM), X-ray diffraction and High Resolution Transmission Electron Microscopy (HRTEM) characterizations were made. Characteristics bright peaks appear in the Thermoluminescence (TL) spectra, and PL peak emission as well, of the Eu, Tb, Dy dopants in the HfO2 matrix. The results obtained show that nanocrystal structures embebed in a metal oxide matrix of HfO2 could be a prominent material to be used in radiation dosimetry, technological development, and radiological protection.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Reynoso Manríquez, R., Peláez-Rodríguez, A., Guzman Mendoza, J., Rivera Montalvo, T., Guzmán Olguín, J. C., Díaz Góngora, J. I., Cerón Ramírez, P. V., García Hipólito, M., Falcony, C.. Photo, cathode and thermoluminescent properties of dysprosium-doped HfO2 films deposited by ultrasonic spray pyrolysis. Applied Radiation and Isotopes, Volume 92, pages 9195 (2014).Google Scholar
Guzman Mendoza, J., Aguilar Frutis, M.A., Alarcon Flores, G., Garcıa Hipolito, M., Maciel Cerda, A., Azorın Nieto, J., Rivera Montalvo, T., Falcony, C.. Synthesis and characterization of hafnium oxide films for thermo and photoluminescence applications. Applied Radiation and Isotopes 68, 696699 (2010).Google Scholar
Cho, Y.J., Nguyen, N.V., Reicher, C.A., Ehrstein, J.R., Lee, B.H., Lee, J.C.., Spectroscopic ellipsometry characterization of high-k dielectric HfO2 thin films and the high-temperature annealing effects on their optical properties. Appl. Phys. Lett. 80, 1249 (2002).Google Scholar
Lange, S., Kiisk, V., Reedo, V., Kirm, M., Aarik, J., Sildos, I., 2006. Luminescence of RE ions in HfO2 thin films and some possible applications. Opt. Mater. 28, 1238.Google Scholar
Langlet, M., Joubert, J.C., In: Rao, C.N.R. (Ed.), Chemistry of Advanced Materials. Blackwell Science, Oxford, UK, pp. 55 (1993).Google Scholar
Ho, M. Y., Gong, H., Wilk, G. D., Busch, B. W., Green, M. L., Voyles, P. M., Muller, D. A., Bude, M., Lin, W. H., See, a., Loomans, M. E., Lahiri, S. K. and Räisänen, Petri I.. Journal of Applied Physics, Volume 93, number 3, 14771481 (2003).Google Scholar
Gilo, M. and Croitoru, N.. Thin Solid Films, 350, 203208 (1999).Google Scholar
Al-Kuhaili, M.F., Optical properties of hafnium oxide thin films and their application in energy efficient windows, J. Opt. Mater. 27, 383387 (2004).CrossRefGoogle Scholar
Torchio, Philippe, Gatto, Alexandre, Alvisi, Marco, Albrand, Gérard, Kaiser, Norbert, and Amra, Claude, High reflectivity HfO2/SiO2 ultraviolet mirrors, Appl. Optics. 41, issue 16, 32563261 (2002).CrossRefGoogle ScholarPubMed
Wang, L., Fan, B., Wang, Z., Cheng, X. Wu, Y., Efects of substrate temperature on crystallite orientation of HfO2 thin films, Mater. Sci. Poland 27 No. 2 (2009).Google Scholar
Khoshmann, J. M., Khan, A., Kordesch, M. E., Surface & Coatings Technology, 202 25002502 (2008).Google Scholar
Balog, M. and Schieber, M., Thin Solid Films, 41, 247259 (1977).Google Scholar
Villanueva-Ibañez, M., Dujardin, C. and Mugnier, J.. Materials Science and Engineering, B 105, 1215 (2003).Google Scholar
Schlegel, HB Geometry optimization.Wiley, New York. doi: 10.1002/wcms.34 (2011).Google Scholar
Hohenberg, P, Kohn, W Inhomogeneous electron gas. Phys Rev 136:B864B871 (1964).Google Scholar
Parr, RG, Yang, W Density-functional theory of atoms and molecules. Oxford Univ Press 7677 (1989).Google Scholar
Giannozzi, P Notes on pseudopotential generation. Scuola Normale Superiore di Pisa (2007).Google Scholar
Perdew, JP, Zunger, A Self-interaction correction to density functional approximations for many-electron systems. Phys Rev B, 23 : 5048–79 (1981).CrossRefGoogle Scholar
Troullier, N, Martíns, JL Efficient pseudo potentials for plane-wave calculations. Phys Rev B 43:19932006 (1991)Google Scholar
Giannozzi, P, Baroni, S, Bonini, N, Calandra, M, Car, R, Cavazzoni, C et al. . Quantum espresso: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502–19 (2009).Google Scholar
Rapaport, D. C.. The Art of Molecular Dynamics Simulation. Cambridge University Press, 2nd Ed. (2010).Google Scholar
Dennington, Roy, Keith, Todd, and Millam, John. GaussView V 5.0.9. Semichem Inc, Shawnee Mission, KS (2009).Google Scholar
Parrinello, M, Rahman, A Polymorphic transitions in single crystals. A new molecular dynamics method. J Appl Phys 52:7182 (1981).CrossRefGoogle Scholar