Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T02:05:45.788Z Has data issue: false hasContentIssue false

Structural Correlation of Ferroelectric Behavior in Mixed Hafnia-Zirconia High-k Dielectrics for FeRAM and NCFET Applications

Published online by Cambridge University Press:  28 February 2019

Vineetha Mukundan*
Affiliation:
SUNY Polytechnic Institute, Albany, NY
Karsten Beckmann
Affiliation:
SUNY Polytechnic Institute, Albany, NY
Kandabara Tapily
Affiliation:
TEL Technology Center, America, LLC, Albany, NY
Steven Consiglio
Affiliation:
TEL Technology Center, America, LLC, Albany, NY
Robert Clark
Affiliation:
TEL Technology Center, America, LLC, Albany, NY
Gert Leusink
Affiliation:
TEL Technology Center, America, LLC, Albany, NY
Nathaniel Cady
Affiliation:
SUNY Polytechnic Institute, Albany, NY
Alain C Diebold
Affiliation:
SUNY Polytechnic Institute, Albany, NY
*
Get access

Abstract

The recent discovery of ferroelectric behavior in doped hafnia-based dielectrics, attributed to a non-centrosymmetric orthorhombic phase, has potential for use in attractive applications such as negative differential capacitance field-effect-transistors (NCFET) and ferroelectric random access memory devices (FeRAM). Alloying with similar oxides like ZrO2, doping with specific elements such as Si, novel processing methods, encapsulation and annealing schemes are also some of the techniques that are being explored to target structural modifications and stabilization of the non-centrosymmetric phase. In this study, we utilized synchrotron-based x-ray diffraction in the grazing incidence in plane geometry (GIIXRD) to determine the crystalline phases in hafnia-zirconia (HZO) compositional alloys deposited by atomic layer deposition (ALD). Here we compare and contrast the structural phases and ferroelectric properties of mechanically confined HZO films in metal-insulator-metal (MIM) and metal-insulator-semiconductor (MIS) structures. Both MIM and MIS structures reveals a host of reflections due to non-monoclinic phases in the d-spacing region between 1.75Å to 4Å. The non-monoclinic phases are believed to consist of tetragonal and orthorhombic phases. Compared to the MIS structures a suppression of the monoclinic phase in MIM structures with 50% zirconia or less was observed. The correlation of the electrical properties with the structural analysis obtained by GIIXRD highlights the importance of understanding the effects of the underlying substrate (metal vs. Si) for different target applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Böscke, T. S., Müller, J., Bräuhaus, D., Schröder, U., and Böttger, U., Appl. Phys. Lett. 99, 10 (2011).Google Scholar
Mikolajick, T., Slesazeck, S., Park, M., and Schroeder, U., MRS Bulletin., 43, 340346 (2018).CrossRefGoogle Scholar
Park, M. H., Lee, Y. H., Kim, H. J., Kim, Y. J., Moon, T., Kim, K. D., Müller, J., Kersch, A., Schroeder, U., Mikolajick, T., and Hwang, C. S., , Adv. Mater., 27, 18111831 (2015).CrossRefGoogle Scholar
Jerry, M., Chen, P. Y., Zhang, J., Sharma, P., Ni, K., Yu, S., and Datta, S. in Electron Devices Meeting (IEDM), (IEEE International Electron Device Meeting (IEDM) San Francisco, CA, 2017) pp. 6.2.16.2.4.Google Scholar
Aziz, A., Breyer, E. T., Chen, A., Chen, X., Datta, S., Gupta, S. K., Hoffmann, M., Hu, X. S., Ionescu, A., Jerry, M., and Mikolajick, T. in Design, Automation & Test in Europe Conference & Exhibition (DATE, IEEE, 2018) pp. 12891298.Google Scholar
Mittmann, T., Fengler, F. P. G., Richter, C., Park, M. H., Mikolajick, T., and Schroeder, U., Microelectronic Engineering, 178, 4851 (2017).CrossRefGoogle Scholar
Chernikova, A., Kozodaev, M., Markeev, A., Negrov, D., Spiridonov, M., Zarubin, S., Bak, O., Buragohain, P., Lu, H., Suvorova, E., and Gruverman, A., ACS Appl. Matl. & Interf., 8, 72327237 (2016).CrossRefGoogle Scholar
Wang, J., Li, H. P., and Stevens, R., J. Matl. Sci. 27, 53975430 (1992).CrossRefGoogle Scholar
Ohtaka, O., Fukui, H., Kunisada, T., Fujisawa, T., Funakoshi, K., Utsumi, W., Irifune, T., Kuroda, K., and Kikegawa, T., J. Am. Ceram. Soc. 84, 13691373 (2001).CrossRefGoogle Scholar
Sang, X., Grimley, E. D., Schenk, T., Schroeder, U., and LeBeau, J. M., Appl. Phys. Lett. 106, 162905 (2015).CrossRefGoogle Scholar
Xu, L., Nishimura, T., Shibayama, S., Yajima, T., Migita, S, and Toriumi, A., J. Appl. Phys., 122, 124104 (2017).CrossRefGoogle Scholar
Park, M. H., Kim, H. J., Kim, Y. J., Moon, T., Kim, K. D., Lee, Y. H., Hyun, S. D., and Hwang, C. S., J. Mater. Chem. C 3, 62916300 (2015).CrossRefGoogle Scholar
Kim, H. J., Park, M. H., Kim, Y. J., Lee, Y. H., Moon, T., Kim, K. D., Hyun, S. D., and Hwang, C. S., Nanoscale 8, 13831389 (2016).CrossRefGoogle ScholarPubMed
Park, M. H., Kim, H. J., Kim, Y. J., Lee, W., Moon, T., Kim, K. D., and Hwang, C. S., Appl. Phys. Lett. 105, 072902 (2014).CrossRefGoogle Scholar
Dey, S., Tapily, K., Consiglio, S., Clark, R. D., Wajda, C. S., Leusink, G. J., Woll, A. R., Sharma, P., Dutta, S., and Diebold, A. C. in International Conference on Frontiers of Characterization and Metrology for Nanoelectronics, edited by Secula, E. M. and Seiler, D. G., (Frontiers of Characterization and Metrology for Nanoelectronics (FCMN) 2017) pp. 223225.Google Scholar
Kisi, E. H., Howard, C. J., and Hil, R. J., J. Am. Ceram. Soc. 72, 1757 (1989) - SG 29- Pbc21- ICSD CollCode 67004.CrossRefGoogle Scholar
Hann, R. E., Suitch, P. R., , J. and Pentecost, L., J. Am. Ceram. Soc. 68, 285 (1985) - SG 14 - P21/c - ICSD CollCode 173964.CrossRefGoogle Scholar
Ohtaka, O., Yamanaka, T., and Kume, S., Nippon Seramikkusu Kyokai Gakujustsu Ronbunchi., 99, 826 (1991) - SG 61 - Pbca - ICSD CollCode 173965.CrossRefGoogle Scholar
Kang, J., Lee, E. C., and Chang, K. J., Phys. Rev. B., 68, 054106 (2003) - SG 62 - Pnma - ICSD Coll Code 173963.CrossRefGoogle Scholar
Curtis, et al. J. Am. Ceram. Soc. 37, 458 (1954) - SG 137- P42/nmc -ICSD CollCode 85322.CrossRefGoogle Scholar
Demkov, A. A., Phys. Stat. Sol. (b), 226, 57 (2001) - SG 137- P42/nmc -ICSD CollCode 85322.3.0.CO;2-L>CrossRefGoogle Scholar
Wong-Ng, W., McMurdie, H. F., Paretzkin, B., Zhang, Y, Davis, K. L., Hubbard, C., Dragoo, A. L., and Stewart, J. M., Powder Diffraction 2, 191 (1987) - Fm3m- SG 225- ICSD CollCode 604220.CrossRefGoogle Scholar
Dey, S., Tapily, K., Consiglio, S., Clark, R. D., Wajda, C. S., Leusink, G. J., Woll, A. R., and Diebold, A. C., J. Appl. Phys. 120, 125304 (2016).Google Scholar
Huan, T. D., Sharma, V., Rossetti, G. A., and Ramprasad, R., Phys. Rev. B, 90, 064111 (2014).CrossRefGoogle Scholar
Müller, J., Böscke, T. S., Bräuhaus, D., Schröder, U., Kücher, J., Mikolajick, T., and Frey, L., Appl. Phys. Lett., 99, 112901 (2011).CrossRefGoogle Scholar
Müller, J., Böscke, T. S., Schröder, U., Mueller, S., Bräuhaus, D., Bottger, U., Frey, L., and Mikolajick, T., Nano Lett. 12, 43184323 (2012).CrossRefGoogle Scholar
Reyes-Lillo, S. E., Garrity, K. F., and Rabe, K. M., Phys. Rev. B, 90, 140103 (2014).CrossRefGoogle Scholar