Published online by Cambridge University Press: 16 March 2018
In battery systems, a solid electrolyte interphase (SEI) is formed through electrolyte reaction on an electrode surface. The formation of SEI can have both positive and negative effects on electrochemistry. The initial formation of the layer protects the electrode from further reactivity, which can improve both shelf and cycle life. However, if the layer continues to form, it can impede charge transfer, which increases cell resistance and limits cycle life. The role of SEI is particularly important when studying conversion electrodes, since phase transformations which unveil new electroactive surfaces during reduction/oxidation can facilitate electrolyte decomposition. This manuscript highlights recent developments in the understanding and control of SEI formation for magnetite (Fe3O4) conversion electrodes through electrolyte and electrode modification.
Equivalent contributions.