Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-03T21:28:14.651Z Has data issue: false hasContentIssue false

Synchrotron x-ray thermal diffuse scattering probes for phonons in Si/SiGe/Si trilayer nanomembranes

Published online by Cambridge University Press:  16 May 2016

Kyle M. McElhinny
Affiliation:
Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
Gokul Gopalakrishnan
Affiliation:
Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
Donald E. Savage
Affiliation:
Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
David A. Czaplewski
Affiliation:
Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
Max G. Lagally
Affiliation:
Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
Martin V. Holt
Affiliation:
Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
Paul G. Evans*
Affiliation:
Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
*
*Corresponding author. E-mail: pgevans@wisc.edu
Get access

Abstract

Nanostructures offer the opportunity to control the vibrational properties of via the scattering of phonons due to boundaries and mass disorder as well as through changes in the phonon dispersion due to spatial confinement. Advances in understanding these effects have the potential to lead to thermoelectrics with an improved figure of merit by lowering the thermal conductivity and to provide insight into electron-phonon scattering rates in nanoelectronics. Characterizing the phonon population in nanomaterials has been challenging because of their small volume and because optical techniques probe only a small fraction of reciprocal space. Recent developments in x-ray scattering now allow the phonon population to be evaluated across all of reciprocal space in samples with volumes as small as several cubic micrometers. We apply this approach, synchrotron x-ray thermal diffuse scattering (TDS), to probe the population of phonons within a Si/SiGe/Si trilayer nanomembrane. The distributions of scattered intensity from Si/SiGe/Si trilayer nanomembranes and Si nanomembranes with uniform composition are qualitatively similar, with features arising from the elastic anisotropy of the diamond structure. The TDS signal for the Si/SiGe/Si nanomembrane, however, has higher intensity than the Si membrane of the same total thickness by approximately 3.75%. Possible origins of the enhancement in scattering from SiGe in comparison with Si include the larger atomic scattering factor of Ge atoms within the SiGe layer or reduced phonon frequencies due to alloying.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bannov, N., Mitin, V., and Stroscio, M., Phys. Status Solidi B 183, 131 (1994).Google Scholar
Cuffe, J., Chávez, E., Shchepetov, A., Chapuis, P.-O., El Boudouti, E. H., Alzina, F., Kehoe, T., Gomis-Bresco, J., Dudek, D., Pennec, Y., Djafari-Rouhani, B., Prunnila, M., Ahopelto, J., and Sotomayor Torres, C. M., Nano Lett. 12, 3569 (2012).CrossRefGoogle Scholar
Balandin, A. and Wang, K. L., Phys. Rev. B 58, 1544 (1998).Google Scholar
Balandin, A. A., Nanosci, J.. Nanotechnol. 5, 1015 (2005).Google Scholar
Hori, T., Shiga, T., and Shiomi, J., J. Appl. Phys. 113, 203514 (2013).Google Scholar
Garg, J., Bonini, N., Kozinsky, B., and Marzari, N., Phys. Rev. Lett. 106, 045901 (2011).Google Scholar
Lamb, H., Proc. R. Soc. Lond. Ser. A 93, 114 (1917).Google Scholar
Als-Nielsen, J. and McMorrow, D., Elements of Modern X-Ray Physics, 2nd ed (Wiley, Hoboken, 2011).CrossRefGoogle Scholar
Holt, M., Wu, Z., Hong, H., Zschack, P., Jemian, P., Tischler, J., Chen, H., and Chiang, T.-C., Phys. Rev. Lett. 83, 3317 (1999).Google Scholar
Gopalakrishnan, G., Czaplewski, D. A., McElhinny, K. M., Holt, M. V., Silva-Martínez, J. C., and Evans, P. G., Appl. Phys. Lett. 102, 033113 (2013).Google Scholar
McElhinny, K. M., Gopalakrishnan, G., Savage, D. E., Silva-Martínez, J. C., Lagally, M. G., Holt, M. V., and Evans, P. G., J. Phys. Appl. Phys. 48, 015306 (2015).Google Scholar
Gopalakrishnan, G., Holt, M. V., McElhinny, K. M., Spalenka, J. W., Czaplewski, D. A., Schülli, T. U., and Evans, P. G., Phys. Rev. Lett. 110, 205503 (2013).Google Scholar
Trigo, M., Chen, J., Vishwanath, V. H., Sheu, Y. M., Graber, T., Henning, R., and Reis, D. A., Phys. Rev. B 82, 235205 (2010).CrossRefGoogle Scholar
Trigo, M., Fuchs, M., Chen, J., Jiang, M. P., Cammarata, M., Fahy, S., Fritz, D. M., Gaffney, K., Ghimire, S., Higginbotham, A., Johnson, S. L., Kozina, M. E., Larsson, J., Lemke, H., Lindenberg, A. M., Ndabashimiye, G., Quirin, F., Sokolowski-Tinten, K., Uher, C., Wang, G., Wark, J. S., Zhu, D., and Reis, D. A., Nat. Phys. 9, 790 (2013).Google Scholar