Article contents
Synthesis and Characterization of Hydroxyapatite for Mercury Removal in Polluted Waters
Published online by Cambridge University Press: 14 January 2020
Abstract
According to the UNEP, mercury pollution is one of the main contamination problems of the world. The UN showed that more than 1,870 tons of this metal are released into the environment annually. This material arrives to water bodies where fish consume it and then reaches humans, producing negative effects on their health. The hydroxyapatite is one of the main components of bones and has proven itself to be useful in the removal of mercury from polluted sources. The aim of this research project is to synthesize and characterize different formulations of this substance and to determine which is the best selective formulation to remove mercury in water. Currently, twenty-one formulations have been produced. The experimental variables examined are the pH, the temperature and the time of calcination. These variables are characterized with Infrared Spectrophotometry (IR), Scanning Electron Microscope (SEM) and X-ray diffraction (XRD). Before calcination the samples contained 70% of hydroxyapatite. This concentration increased in some of them after calcination. The analysis of the results allowed to test the efficiency of these formulations at removing mercury from water. These materials will also be combined, in future stages of the research, with other substances such as activated carbon and organic fibers to improve their performance. The material will be used to coat a filter so that it can become a piping accessory to remove mercury from polluted waters as it is being recirculated.
- Type
- Articles
- Information
- MRS Advances , Volume 4 , Issue 64: International Materials Research Congress XXVIII , 2019 , pp. 3569 - 3577
- Copyright
- Copyright © Materials Research Society 2020
References
References:
- 1
- Cited by