Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T10:20:32.230Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Nano-crystalline La2Zr2O7 Film by Reactive Spray Deposition Technology for Application in Thermal Barrier Coatings

Published online by Cambridge University Press:  07 February 2017

Yang Wang*
Affiliation:
University of Connecticut, 97 North Eagleville Road, Storrs, CT 06269-3136
Rishi Kumar
Affiliation:
University of Connecticut, 97 North Eagleville Road, Storrs, CT 06269-3136
Justin Roller
Affiliation:
FEI Company, 5350 NE Dawson Creek Drive, Hillsboro, OR 97124
Radenka Maric
Affiliation:
University of Connecticut, 97 North Eagleville Road, Storrs, CT 06269-3136
Get access

Abstract

Lanthanum zirconate (La2Zr2O7) nano-crystalline films with cubic structure have been successfully prepared by a facile synthesis approach called reactive spray deposition technology (RSDT). La2Zr2O7 nanoparticles are produced by combusting a precursor solution of lanthanum acetylacetonate hydrate and zirconium acetylacetonate dissolved in an organic solvent mixture. The nanoparticles formed during the combustion process are directly deposited onto the substrate. The composition and microstructure of the as-deposited films are extensively characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The thermal diffusivities of the films are investigated by the means of laser flash method.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Cremer, R., Witthaut, M., Reichert, K., Schierling, M., Neuschuetz, D., Surf. Coat. Technol. 108–109, 4858 (1998).CrossRefGoogle Scholar
Evans, A.G., Clarke, D.R., Levi, C.G., J. Eur. Ceram. Soc. 28, 14051419 (2008).CrossRefGoogle Scholar
Hsu, J.W.P., Tian, Z.R., Simmons, N.C., Matzke, C.M., Voigt, J.A., Liu, J., Nano Lett. 5, 83 (2005).CrossRefGoogle Scholar
Yang, J., Li, D., Wang, X., Yang, X.J., Lu, L.D., J. Solid State Chem. 165, 193 (2002).Google Scholar
Zhou, H.M., Yi, D.Q., Yu, Z.M., Xiao, L.R., J. Alloys Compd. 438, 217 (2007).Google Scholar
Koteswara Rao, K., Taqveem Banu, M., Vithal, G.Y.S.K., Swamy, K., Kumar, R., Mater. Lett. 54, 205 (2002).CrossRefGoogle Scholar
Tong, , Zhu, Junwu, Lu, Lude, Wang, Xin, Yang, Xujie, J. Alloys Compd. 465, 280 (2008).Google Scholar
Matsumura, Y., Yoshinaka, M., Hirota, K., Yamaguchi, O., Solid State Commun. 104, 341 (1997).Google Scholar
Tong, Yuping, Wang, Yanping, Yu, Zongxue, Wang, Xin, Yang, Xujie, Lu, Lude, Mater. Lett. 62, 889 (2008).CrossRefGoogle Scholar
Chen, D., Xu, R., Mater. Res. Bull. 33, 409 (1998).Google Scholar
Roller, J.M., Josefina Arellano-Jiménez, M., Yu, H., Jain, R., Barry Carter, C., Maric, R., Electrochim. Acta. 107, 632655 (2013).CrossRefGoogle Scholar
Roller, J.M., Jiménez, M. J., Jain, R., Yu, H., Maric, R., Carter, C. B., Processing, ECS Trans. 45, 97106 (2013).CrossRefGoogle Scholar
Maric, R., Roller, J., Neagu, R., J. Therm. Spray Technol. 20, 696718 (2011).CrossRefGoogle Scholar
Maric, R., TPK. Vanderhoek, J.M. Roller, US Patent App. 370 (2008).Google Scholar
Cao, X.Q., Vassen, R., Fischer, W., Tietz, F., Jungen, W., Stoever, D., Adv. Mater. 15, 1438 (2003).CrossRefGoogle Scholar
Wang, X. et al., Applied Surface Science 257, 89458949 (2011).CrossRefGoogle Scholar
Zhou, H.M., Yi, D.Q., Yu, Z.M., Xiao, L.R., J. Alloys Compd, 438, 217221 (2007).CrossRefGoogle Scholar
Lehmann, H., Pitzer, D., Pracht, G., Vassen, R., Stover, D., J. Am. Ceram. Soc. 86, 13381344 (2003).CrossRefGoogle Scholar
Chen, H.F., Gao, Y.F., Liu, Y., Luo, H.J., J. Alloys Compd 480.2, 843848 (2009).Google Scholar
Chen, H, Gao, Y, Tao, S, Liu, Y, Luo, H, J. Alloys Compd 486.2, 843848 (2009).Google Scholar