Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-11T01:06:31.019Z Has data issue: false hasContentIssue false

Synthesis of Amine Functionalized Mesoporous Silicas Templated by Castor Oil for Transesterification

Published online by Cambridge University Press:  10 April 2018

Elianaso Elimbinzi
Affiliation:
Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, Dar es Salaam, Tanzania
Stephen S. Nyandoro*
Affiliation:
Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, Dar es Salaam, Tanzania
Egid B. Mubofu
Affiliation:
Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, Dar es Salaam, Tanzania
Amin Osatiashtiani
Affiliation:
European Bioenergy Research Institute (EBRI), Aston University, Aston Triangle, Birmingham, B4 7ET, UK
Jinesh C. Manayil
Affiliation:
European Bioenergy Research Institute (EBRI), Aston University, Aston Triangle, Birmingham, B4 7ET, UK
Mark A. Isaacs
Affiliation:
European Bioenergy Research Institute (EBRI), Aston University, Aston Triangle, Birmingham, B4 7ET, UK
Adam F. Lee
Affiliation:
School of Science, RMIT University, Melbourne VIC3000, Australia
Karen Wilson*
Affiliation:
School of Science, RMIT University, Melbourne VIC3000, Australia
Get access

Abstract

Mesoporous silicas were synthesized via a surfactant-templated sol-gel route using castor oil as the templating agent under acidic medium. The resulting silicas were subsequently amine functionalized with 3-aminopropyltriethoxysilane (NH2-MTS), [3-(2-aminoethylamino)-propyl]trimethoxysilane (NN-MTS), and [3-(diethylamino)propyl]trimethoxysilane(DN-MTS) to introduce surface basicity. Surface physicochemical properties were characterized by field emission gun scanning electron microscopy (FEGSEM), nitrogen porosimetry, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and diffuse reflectance infrared fourier transform spectroscopy (DRIFTS). As-synthesised materials exhibit type IV adsorption-desorption isotherms characteristic of mesoporous structures. Clusters of spherical shaped materials were observed by FEGSEM, suggesting growth of silica occurs within colloidal dispersions. High-resolution N 1s XP spectra and DRIFT spectra confirmed the presence of amine groups in the organo-amine functionalised mesoporous silicas. The amine functionalised mesoporous silicas were active for the transesterification of tributyrin with methanol, with conversion found to increase from NH2-MTS< NN-MTS< DN-MTS.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Omari, A., Mgani, Q. A., and Mubofu, E. B., Green Sustain. Chem. 5, 154163 (2015).CrossRefGoogle Scholar
Shridhar, B. S., V Beena, K., V Anita, M., and Paramjeet, K. B., LJS. 17, 5970 (2010).Google Scholar
Mubofu, E. B., Sustain. Chem. Process.4(1), 1123(2016).CrossRefGoogle Scholar
Azcan, N. and Demirel, E., Ind. Eng. Chem.Res. 47, 17741778(2008).CrossRefGoogle Scholar
Kyobe, J. W., Mubofu, E. B., and Makame, Y. M. M., New J. Chem. 39, 72517259 (2015).CrossRefGoogle Scholar
William, J., Beatus, E., Makame, Y. M. M., and Mlowe, S., Phys. E Low-dimensional Syst. Nanostructures.76, 95102 (2016).Google Scholar
Wang, G. and Sun, S., J. Oleo Sci. 66 (7), 753-759 (2017).CrossRefGoogle Scholar
Ismail, S., Ahmed, A. S., Anr, R., and Hamdan, S., J. Renew. Energy. 2016, 18(2016).CrossRefGoogle Scholar
Hasanzadeh, M., Shadjou, N., de la Guardia, M., Eskandani, M., and Sheikhzadeh, P., TrAC-Trends Anal. Chem..33, 117129(2012).CrossRefGoogle Scholar
Bharti, C., Gulati, N., Nagaich, U., and Pal, A., Int. J. Pharm. Investig. 5 (3), 124133, (2015).CrossRefGoogle Scholar
V Biradar, A., Patil, V. S., Chandra, P., Doke, D. S., and Asefa, T., Chem. Commun. 51, (40), 84968499 (2015).CrossRefGoogle Scholar
Sundblom, A., Palmqvist, A. E. C., and Holmberg, K., Langmuir,26(3), 19831990(2010).CrossRefGoogle Scholar
Baďurová, E., Raabová, K., and Bulánek, R., Dalt. Trans. 43 (10), 3897-3905 (2014).CrossRefGoogle Scholar
Yang, L., Guo, Y., Zhan, W., Guo, Y., Wang, Y., and Lu, G., Microporous Mesoporous Mater. 197, 17(2014).CrossRefGoogle Scholar
Hamad, F. B., Mubofu, E. B., and Makame, Y. M. M., Catal. Sci. Technol. 1 (3), 444452(2011).CrossRefGoogle Scholar
Mubofu, E. B., Mdoe, J. E. G., and Kinunda, G., Catal. Sci. Technol. 1 (8), 14231431(2011).CrossRefGoogle Scholar
Msigala, S. C. and Mdoe, J. E. G, Tanzania J. Sci. vol. 38(1), 2434 (2012).Google Scholar
Andrew, M. and Mubofu, E. B., Int. Res. J. Pure Appl. Chem. 15 (1), 112(2017).CrossRefGoogle Scholar
Taib, N. I., Endud, S., and Katun, M. N., Int. J. Chem.3(3), 210(2011).CrossRefGoogle Scholar
Mu, M., Yan, X., Li, Y., and Chen, L., J. Nanoparticle Res.19(4),148161(2017).CrossRefGoogle Scholar
Fagerlund, G., Mater. Constr. 6 (3), 239-245 (1973).CrossRefGoogle Scholar
Barrett, E. P., Joyner, L. G., and Halenda, P. P., J. Am. Chem. Soc. 73 (1) 373380 (1951).CrossRefGoogle Scholar
Sing, K., Colloids Surfaces A Physicochem. Eng. Asp. 187188, (3-9)(2001).Google Scholar
Lee, A.F., Bennett, J.A., Manayil, J.C. and Wilson, K., Chem. Soc. Rev. 43, 78877916 (2014)CrossRefGoogle Scholar
Wilson, K. and Lee, A.F., Catal. Sci. Technol. 2, 884897 (2012).CrossRefGoogle Scholar
Wilson, K. and Lee, A.F., Phil. Trans. R. Soc. A 374, 20150081 (2016).CrossRefGoogle Scholar
Pirez, C., Caderon, J.-M., Dacquin, J.-P., Lee, A.F. and Wilson, K., ACS Catal. 2, 16071614 (2012).CrossRefGoogle Scholar
Dacquin, J.-P., Pirez, C., Lee, A.F. and Wilson, K., Chem. Comm. 48, 212214 (2012).CrossRefGoogle Scholar
Pirez, C., Lee, A.F., Manayil, J.C., Parlett, C.M.A. and Wilson, K., Green Chem. 16, 45064509 (2014).CrossRefGoogle Scholar