Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T21:37:55.270Z Has data issue: false hasContentIssue false

Synthesis of Mixed AuZn Nanoparticles by Spark Discharge Technique

Published online by Cambridge University Press:  29 April 2019

Shubhra Kala*
Affiliation:
Department of Physics, H.N.B. Garhwal (a central) University, Srinagar (Garhwal) Uttarakhand, 246174, India
F. E. Kruis
Affiliation:
Institute for Nanostructures and Technology, Faculty of Engineering Science, University of Duisburg-Essen, Duisburg, 47057, Germany
*
a)Corresponding author: shubkala@gmail.com
Get access

Abstract

In this study, feasibility of spark discharge technique to generate mixed metal nanoparticles is demonstrated. Two immiscible metals Au and Zn are selected to prepare AuZn mixed nanoparticles. Ignition of spark between Au and Zn electrodes under normal pressure, in the presence of carrier gas, leads to formation of mixed nanoparticles by condensation and nucleation. Online particle size-distribution is monitored by a scanning mobility particle sizer on changing carrier gas flow rate and capacitor charging current during co-sparking between Au and Zn electrodes. The technique provides flexibility to generate binary mixture of AuZn nanoparticles in the size range of 10-80 nm. Distribution of Au and Zn in the prepared mixed nanoparticles is mapped by scanning electron microscopy and high resolution electron microscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Haldar, K. K., Sen, T. and Patra, A., J. Phys. Chem. C 114, 4869 (2010).CrossRefGoogle Scholar
Ferrando, R., Jellinek, J. and Johnston, R.L., Chem. Rev 108, 845 (2008).CrossRefGoogle Scholar
Almtoft Pagh, K., Ejsing, A. M., Bottiger, J., Chevallier, J., Schell, N. and S Martins, R. M., J. Mater. Res. 22(4), 1018 (2007).CrossRefGoogle Scholar
Radic, N. and Stubicar, M., J. Mater. Sci. 33, 3401(1998).CrossRefGoogle Scholar
Cagran, C., Wilthan, B. and Pottlacher, G., Thermochim. Acta 445, 104 (2006).CrossRefGoogle Scholar
Liang, L. H., Yang, G. W. and Li, B., J. Phys. Chem. B 109, 1608 (2005).Google Scholar
Zeng, J., Yang, J., Yang Lee, J. and Zhou, W., J. Phys. Chem. B 110, 24606 (2006).CrossRefGoogle Scholar
Devarajan, S., Bera, P. and Sampath, S., J. Colloid. Interface Sci. 290, 117 (2005).CrossRefGoogle Scholar
Kang, H-K and Bong Kang, S., Scr. Mater. 49, 1169 (2003).CrossRefGoogle Scholar
Tabrizi, N. S., Xu, Q., van der Pers, N. M., Lafont, U. and Schmidt-Ott, A., J. Nanopart. Res. 11, 1209 (2009).CrossRefGoogle Scholar
Tabrizi, N. S., Xu, Q., van der Pers, N. M. and Schmidt-Ott, A., J. Nanopart. Res. 12, 247 (2010).CrossRefGoogle Scholar
Kala, S., Theissmann, R. and Kruis, F. E., J. Nanopart. Res. 15, 1963 (2013)CrossRefGoogle Scholar
Okamoto, H., J. Phase Equ. Diff. 27(4), 427 (2006).CrossRefGoogle Scholar
Pemsler, J. P. and Rapperport, E. J., Metal. Trans. 2, 79 (1971)CrossRefGoogle Scholar
Helsper, C., Mölter, W., Löffler, F., Wadenphol, C., and Kaufmann, S., Atmos. Environ., Part A 27A, 1271 (1993)CrossRefGoogle Scholar
Kala, S., Rouenhoff, M., Theissmann, R. and Kruis, F. E., Nanoparticles from the gas phase, Nanoscience and Technology, Springer- Verlag, Berlin Heidelberg (2012) pp 20.Google Scholar
Dixkens, J. and Fissan, H., Aerosol Sci. Technol. 30, 438 (1999).CrossRefGoogle Scholar
Juárez-Ruiz, E., Pal, U., Lombardero-Chartuni, J. A., Medina, A. and Ascencio, J. A., Appl. Phys. A (2007)Google Scholar
Wittmaack, K., J. Nanopart. Res. 9, 191 (2007).CrossRefGoogle Scholar
Sutter, E. and Sutter, P., Nanotechnology 22, 2956051(2011).CrossRefGoogle Scholar