Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T22:16:33.733Z Has data issue: false hasContentIssue false

Thermal Evaporated Bismuth Triiodide (BiI3) Thin Films for Photovoltaic Applications

Published online by Cambridge University Press:  25 April 2018

Natália F. Coutinho*
Affiliation:
‘Gleb Wataghin’ Institute of Physics, UNICAMP, 13083-859, Campinas-SP, Brazil
Rafael B. Merlo
Affiliation:
‘Gleb Wataghin’ Institute of Physics, UNICAMP, 13083-859, Campinas-SP, Brazil
Nelson F. V. Borrero
Affiliation:
‘Gleb Wataghin’ Institute of Physics, UNICAMP, 13083-859, Campinas-SP, Brazil
Francisco C. Marques
Affiliation:
‘Gleb Wataghin’ Institute of Physics, UNICAMP, 13083-859, Campinas-SP, Brazil
Get access

Abstract

Bismuth triiodide (BiI3) is a potential candidate for application in solar cell due to its good optoelectronic properties and because it is free of toxic elements. It can be used as the absorber material in solar cells or converted into the perovskite-like material MA3Bi2I9, suitable also for photovoltaic applications. Bismuth triiodide has been prepared by physical vapour transport (PVT) and by solution process through spin coating. In this work we present optical and structural/topological properties of BiI3 deposited by thermal evaporation under high vacuum. The films are slightly tensile, polycrystalline, homogenously distributed and with good adherence on several substrates, with an indirect bandgap of 1.81 eV, index of refraction of 3.3 (630 nm), photoluminescence centered at 1.74 eV and a Raman peak at 118cm-1 associated with the Ag mode.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

National renewable energy laboratory, best research-cell efficiencies chart. Available at https://www.nrel.gov/pv/assets/images/efficiency-chart.png (accessed 17 october 2017).Google Scholar
Brandt, R. E., Kurchin, R. C., Hoye, R. L. Z., Poindexter, J. R., Wilson, M. W.B., Sulekar, S., Lenahan, F., Yen, P. X. T., Stevanovic, V., Nino, J. C., Bawendi, M. G., and Buonassisi, T., J. Phys. Chem. Lett. 6, 42974302 (2015).CrossRefGoogle Scholar
Podraza, N. J., Qiu, W., Hinojosa, B. B., Xu, H., Motyka, M. A., Phillpot, S. R., Baciak, J. E., Trolier-McKinstry, S., and Nino, J. C., J. Appl. Phys. 114, 033110 (2013).CrossRefGoogle Scholar
Hamdeh, U. H., Nelson, R. D., Ryan, B. J., Bhattacharjee, U., Petrich, J. W., and Panthani, M. G., Chem. Mater. 28, 65676574 (2016).CrossRefGoogle Scholar
Lehner, A. J., Wang, H., Fabini, D. H., Liman, C. D., Hébert, C.A., Perry, E. E., Wang, M., Bazan, G. C., Chabinyc, M. L., and Seshadri, R., Appl. Phys. Lett. 107, 131109 (2015).CrossRefGoogle Scholar
Hoye, R. L. Z., Brandt, R. E., Osherov, A., Stevanovic, V., Stranks, S. D., Wilson, M. W. B., Kim, H., Akey, A. J., Perkins, J. D., Kurchin, R. C., Poindexter, J. R., Wang, E. N., Bawendi, M. G., Bulovic, V., and Buonassisi, T., Chem.. -Eur. J. 22, 26052610 (2016).CrossRefGoogle Scholar
Ran, C., Wu, Z., Xi, J., Yuan, F., Dong, H., Lei, T., He, X., and Hou, X., J. Phys. Chem. Lett. 8, 394400 (2017).CrossRefGoogle Scholar
Zhang, Z., Li, X., Xia, X., Wang, Z., Huang, Z., Lei, B., and Gao, Y., J. Phys. Chem. Lett. 8, 43004307 (2017).CrossRefGoogle Scholar
Lintereur, A. T., Qiu, W., Nino, J. C., and Baciak, J.. Nucl. Instrum. Methods Phys. Res., Sect. A 652, 166169 (2011).CrossRefGoogle Scholar
Fornaro, L., Saucedo, E., Mussio, L., Gancharov, A., and Cuna, A., IEEE Nucl. Sci. Symp. Conf. Rec. 1, 3337 (2002).Google Scholar
Sellin, P. J., Nucl. Instrum. Methods Phys. Res., Sect. A 563, 18, (2006).CrossRefGoogle Scholar
Han, H., Hong, M., Gokhale, S. S., Sinnott, S. B., Jordan, K., Baciak, J. E., and C Nino, J., J. Phys. Chem. C 118, 32443250 (2014).CrossRefGoogle Scholar
Hoye, R. L. Z., Schulz, P., Schelhas, L. T., Holder, A. M., Stone, K. H., Perkins, J. D., Vigil-Fowler, D., Siol, S., Scanlon, D. O., Zakutayev, A., Walsh, A., Smith, I. C., Melot, B. C., Kurchin, R. C., Wang, Y., Shi, J., Marques, F. C., Berry, J. J., Tumas, W., Lany, S., Stevanovic, V., Toney, M. F., and Buonassisi, T., Chem. Mater. 29, 19641988 (2017).CrossRefGoogle Scholar
de Lima, M. M. Jr., Lacerda, R. G., Vilcarromero, J., and Marques, F. C., J. Appl. Phys. 86, 49364942 (1999).CrossRefGoogle Scholar
Marques, F. C., Wickbold, P., Pang, D., Chen, J. H. and Paul, W., J. Appl. Phys. 84, 31183124 (1998).CrossRefGoogle Scholar
Nason, D. and Keller, L., J. Cryst. Growth 156, 221226 (1995).CrossRefGoogle Scholar
Hsueh, H. C., Chen, R. K, Vass, H., Clark, S. J., Ackland, G. J., Poon, W. C-K., and Crain, J., Phys. Rev. B 58, 1481214822 (1998).CrossRefGoogle Scholar
Tauc, J., Mater. Res. Bull. 3, 3746, (1968).CrossRefGoogle Scholar
Chen, Z., Jaramillo, T. F., Deutsch, T. G., Kleiman-Shwarsctein, A., Forman, A. J., Gaillard, N., Garland, R., Takanabe, K., Heske, C., Sunkara, M., McFarland, E. W., Domen, K., Miller, E. L., Turner, J. A. and Dinh, H. N., J. Mater. Res. 25, 316 (2010).CrossRefGoogle Scholar