Published online by Cambridge University Press: 04 September 2017
TiO2 nanotubular structures were formed on titanium foils through anodic oxidation using an electrolyte of Ethyleneglycol-H2O (97:3 Vol %)+0.25 M NH4F at a constant voltage of 60V. The anodized samples were analyzed in a FE-SEM obtaining the geometric parameters of the nanotubular arrays. The diameter and the length of the nanotubes were 112 nm and 65µm |respectively, whereas the wall thickness was 44 nm. Crystalline phase of TiO2 nanotubular films (TNTF) were determined by XRD after annealing at 500°C for 2 h, resulting high intensity peaks of anatase and low intensity peaks of rutile. Then, the crystallized samples were characterized from an optical, photoelectrochemical and photocatalytic point of view. The photoelectrochemical measurements were carried out in 0.5 M Na2SO4 solution using an 8 W UV lamp at a λ= 365 nm, which results were recorded at 0 bias during 10 min under darkness and illumination intervals of 1 min each. Photocatalytic performance of the TNTF was explored with a 10 mg/L methyl orange solution using an UV light at a wavelength of 365 nm. The changes in the concentration of the MO solution was determined from the calibration curve determined from the absorption spectra at different concentrations of MO (from 0.1 mg/L to 20 mg/L). It was observed an efficiency yield of 99.8% in the photocatalytic performance in presence of the TNTF.