Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T11:28:43.121Z Has data issue: false hasContentIssue false

Understanding the Photoluminescence Mechanism of Carbon Dots

Published online by Cambridge University Press:  23 June 2017

Zhoufeng Jiang
Affiliation:
Department of Physics and Astronomy, Bowling Green State University, Bowling Green, Ohio 43403, USA Center of Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA
Marta J. Krysmann
Affiliation:
Centre for Materials Science, University of Central Lancashire, Preston PR12HE, U.K.
Antonios Kelarakis
Affiliation:
Centre for Materials Science, University of Central Lancashire, Preston PR12HE, U.K.
Petr Koutnik
Affiliation:
Center of Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA
Pavel Anzenbacher Jr.
Affiliation:
Center of Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA
Paul J. Roland
Affiliation:
Department of Physics and Astronomy, Wright Center for Photovoltaic Innovation and Commercialization, School of Solar and Advanced Renewable Energy, University of Toledo, Toledo, Ohio 43606, USA
Randy Ellingson
Affiliation:
Department of Physics and Astronomy, Wright Center for Photovoltaic Innovation and Commercialization, School of Solar and Advanced Renewable Energy, University of Toledo, Toledo, Ohio 43606, USA
Liangfeng Sun*
Affiliation:
Department of Physics and Astronomy, Bowling Green State University, Bowling Green, Ohio 43403, USA Center of Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA
*
(Email: lsun@bgsu.edu)
Get access

Abstract

The carbon dots were investigated to reveal their light-emitting mechanism. The fluorescence spectra of carbon dots show typically two different types of photoluminescence: the excitation-independent component in the short wavelength, and the excitation-dependent component in the longer wavelength. The UV-Vis spectrum of carbon dots shows the absorption maximum of 340 nm which should be accredited to the n-π* transition of the carbonyl group in carbon dots. Absolute quantum yields of carbon dots dispersed in Polyvinyl alcohol is around 15% when the excitation wavelength is less than 425 nm, but decreases continuously when the excitation wavelength increases. The decay lifetimes of the carbon dots also show an abrupt change at excitation wavelength 425 nm. Time resolved photoluminescence was implemented from 31K to 291K to study the photoluminescence decay dynamics of carbon dots, resulting in the continuously decreasing of the lifetime as the temperature increases.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. F.; Luo, P. J. G.; Yang, H.; Kose, M. E.; Chen, B. L.; Veca, L. M.; Xie, S. Y., Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128 (24), 77567757.CrossRefGoogle Scholar
Cao, L.; Wang, X.; Meziani, M. J.; Lu, F. S.; Wang, H. F.; Luo, P. J. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D.; Xie, S. Y.; Sun, Y. P., Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 2007, 129 (37), 11318-+.CrossRefGoogle ScholarPubMed
Lu, J.; Yang, J.-x.; Wang, J.; Lim, A.; Wang, S.; Loh, K. P., One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids. ACS Nano 2009, 3 (8), 23672375.CrossRefGoogle ScholarPubMed
Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C. H. A.; Yang, X.; Lee, S.-T., Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angew. Chem. Int. Ed. 2010, 49 (26), 44304434.CrossRefGoogle ScholarPubMed
Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Karakassides, M.; Giannelis, E. P., Surface Functionalized Carbogenic Quantum Dots. Small 2008, 4 (4), 455458.CrossRefGoogle ScholarPubMed
Hola, K.; Zhang, Y.; Wang, Y.; Giannelis, E. P.; Zboril, R.; Rogach, A. L., Carbon dots—Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 2014, 9 (5), 590603.CrossRefGoogle Scholar
Krysmann, M. J.; Kelarakis, A.; Dallas, P.; Giannelis, E. P., Formation Mechanism of Carbogenic Nanoparticles with Dual Photoluminescence Emission. J. Am. Chem. Soc. 2012, 134 (2), 747750.CrossRefGoogle ScholarPubMed
Eda, G.; Lin, Y.-Y.; Mattevi, C.; Yamaguchi, H.; Chen, H.-A.; Chen, I. S.; Chen, C.-W.; Chhowalla, M., Blue Photoluminescence from Chemically Derived Graphene Oxide. Adv. Mater. 2010, 22 (4), 505509.CrossRefGoogle ScholarPubMed
Yu, P.; Wen, X.; Toh, Y.-R.; Tang, J., Temperature-Dependent Fluorescence in Carbon Dots. J. Phys. Chem. C 2012, 116 (48), 2555225557.CrossRefGoogle Scholar