Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T12:43:27.149Z Has data issue: false hasContentIssue false

Variable Phase and Electrochemical Capacitance of Electrospun MnOx Fibers Via Controlled Calcination

Published online by Cambridge University Press:  03 July 2019

Molly C. Brockway*
Affiliation:
Materials Science Ph.D., Montana University System, Butte, MT59701
Jack L. Skinner
Affiliation:
Department of Mechanical Engineering, Montana Technological University, Butte, MT59701
*
Get access

Abstract

Supercapacitors have the potential to complement or replace batteries in many current and emerging applications. As inexpensive and environmentally benign capacitive materials, manganese oxides are promising electrode materials. Nanostructured oxides have high energy storage capacities owing to their increased surface-area-to-volume ratios as compared to bulk materials. By electrospinning precursor-containing polymer fibers and subsequently calcining, nanostructured MnOx fibers can be prepared with relative ease. Controlling calcination pressure and time provides a route for variable capacitance via modifying surface roughness and oxide phase. At moderate pressures and short calcination times, mixed-phase Mn2O3/Mn3O4 fibers with high surface roughness exhibit enhanced electrochemical specific capacitance.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Aricò, A.S., Bruce, P., Scrosati, B., Tarascon, J.M., and Van Schalkwijk, W., Nat. Mater., 4, 366377 (2005).CrossRefGoogle Scholar
Yoo, H.D., Markevich, E., Salitra, G., Sharon, D., and Aurbach, D., Mater. Today, 17, 110121 (2014).CrossRefGoogle Scholar
Simon, P. Gogotsi, Dunn, Y., and Bruce, , Sci. Mag., 343, 12101211 (2014).Google Scholar
Wei, W., Cui, X., Chen, W., and Ivey, D.G., Chem. Soc. Rev., 40, 16971721 (2011).CrossRefGoogle Scholar
Lide, D.R., ed., “CRC Handbook of Chemistry and Physics”, 84th ed., CRC Press, Cleveland, OH (2003).Google Scholar
Chang, J.-K., Chen, Y.-L., and Tsai, W.-T., J. Power Sources, 135, 344353 (2004).CrossRefGoogle Scholar
Pang, S.-C., Anderson, M.A., and Chapman, T.W., J. Electrochem. Soc., 147, 444 (2000).CrossRefGoogle Scholar
Lokhande, C.D., Dubal, D.P., and Joo, O.-S., Curr. Appl. Phys., 11, 255270 (2011).CrossRefGoogle Scholar
Lang, X., Hirata, A., Fujita, T., and Chen, M., Nat. Nanotechnol., 6, 232236 (2011).CrossRefGoogle Scholar
Nathan, T. and Fauzi, A., Electrochemical capacitor based on nano-sized Mn2O3 prepared by a novel solvolysis route, in: 4th Int. Conf. Mater. Adv. Technol. (ICMAT ’07), Singapore (2007).Google Scholar
Nathan, T., Cloke, M., and Prabaharan, S.R.S., J. Nanomater., 2008, 18 (2008).CrossRefGoogle Scholar
Chen, S., Liu, F., Xiang, Q., Feng, X., and Qiu, G., Electrochim. Acta, 106, 360371 (2013).CrossRefGoogle Scholar
Zhu, J., Shi, W., Xiao, N., Rui, X., Tan, H., Lu, X., Hng, H.H., Ma, J., and Yan, Q., ACS Appl. Mater. Interfaces, 4, 27692774 (2012).CrossRefGoogle Scholar
Lee, E., Lee, T., and Kim, B.-S., J. Power Sources, 255, 335340 (2014).CrossRefGoogle Scholar
Suktha, P., Phattharasupakun, N., Dittanet, P., and Sawangphruk, M., RSC Adv ., 7, 99589963 (2017).CrossRefGoogle Scholar
Kolathodi, M.S., Voigt, V., and Singh, G., Meet. Abstr., MA2016-01, 2228–2228 (2016).Google Scholar
Barakat, N.A.M., Woo, K.-D., · Ansari, S G, Ko, J.-A., Kanjwal, M.A., · Hak, , Kim, Y., Barakat, N.A.M., · Kim, H Y, Woo, K.-D., Ansari, S.G., Ko, J.-A., and Kanjwal, M.A., Appl Phys A, 95, 769776 (2009).CrossRefGoogle Scholar
Chen, J.-T., Chen, W.-L., Fan, P.-W., and Yao, I.-C., Macromol. Rapid Commun., 35, 360366 (2014).CrossRefGoogle Scholar
Gu, X., Yue, J., Li, L., Xue, H., Yang, J., and Zhao, X., Electrochim. Acta, 184, 250256 (2015).CrossRefGoogle Scholar
Nathan, T., Cloke, M., and Prabaharan, S.R.S., J. Nanomater., 2008, 18 (2008).CrossRefGoogle Scholar
Chen, W., Fan, Z., Gu, L., Bao, X., and Wang, C., Chem. Commun., 46, 3905 (2010).CrossRefGoogle Scholar
Shao, Y.-Q., Yi, Z.-Y., He, C., Zhu, J.-Q., and Tang, D., J. Am. Ceram. Soc., 98, 14851492 (2015).CrossRefGoogle Scholar