Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T20:59:07.306Z Has data issue: false hasContentIssue false

Visible surface diffusion of gold nanostructures on a paper at room temperature through localized surface plasmon resonance

Published online by Cambridge University Press:  11 February 2019

Nobuko Fukuda*
Affiliation:
Flexible Electronics Research Center (FLEC), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba305-8565, Ibaraki, Japan
Sakae Manaka
Affiliation:
Flexible Electronics Research Center (FLEC), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba305-8565, Ibaraki, Japan
*
*Corresponding author: n-fukuda@aist.go.jp
Get access

Abstract

We visually observed color changes of discontinuous gold surfaces on paper substrates through localized surface plasmon resonance (LSPR) at room temperature due to surface diffusion of gold nanostructures. Isolated nanoparticles and an uncompleted nanosheet of gold were obtained by thermal vapor deposition. After preservation for 8 months in air at room temperature, the particle sizes and shapes remarkably changed with color changes. The surface diffusion of the discontinuous gold on the paper would be derived from solid-state dieting, resulting in the growth of the nanosheet defect and coalescence of the nanoparticles. This is due to the total energy minimization of the surfaces of gold nanostructures and the paper and the interface between gold and the paper.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Martinez, A. W., Phillips, S. T., and Whitesides, G. M., Proc. Natl. Acad. Sci. U.S.A. 105, 19606-19611 (2008).CrossRefGoogle Scholar
Nie, Z., Nijhuis, C. A., Gong, J., Chen, X., Kumachev, A., Martinez, A. W., Narovlyansky, M., and Whitesides, G. M., Lab Chip 10, 477-483 (2010).CrossRefGoogle Scholar
Srimongkon, T., Buerkle, M., Nakamura, A., Enomae, T., Ushijima, H., and Fukuda, N., Jpn. J. Appl. Phys. 56, 05EC04 (2017).CrossRefGoogle Scholar
Gong, M. M., Nosrati, R., San Gabriel, M. C., Zini, A., and Sinton, D., J. Am. Chem. Soc. 137, 13913-13919 (2015).CrossRefGoogle Scholar
Fukuda, N., Srimongkon, T., Ushijima, H., Yamamoto, N., MRS Adv. 2, 2303-2308 (2017).CrossRefGoogle Scholar
Tseng, S.-C., Yu, C.-C., Wan, D., Chen, H.-L., Wang, L. A., Wu, M.-C., Su, W.-F., Han, H.-C, and Chen, L.-C., Anal. Chem. 84, 5140-5145 (2012).CrossRefGoogle Scholar
Tadepalli, S., Kuang, Z., Jiang, Q., Liu, K.-K., Fisher, M. A., Morrissey, J. J., Kharasch, E. D., Slocik, J. M., Naik, R. R., and Singamaneni, S., Sci. Rep. 5, 16206 (2015).CrossRefGoogle Scholar
Lee, C. H., Tian, L., and Singamaneni, S., ACS Appl. Mater. Interf. 12, 3429-3435 (2010).CrossRefGoogle Scholar
Link, S., El-Sayed, M. A., J. Phys. Chem. B 103, 8410-8426 (1999).CrossRefGoogle Scholar
Huang, X., El-Sayed, M. A., J. Adv. Res. 1, 13-28 (2010).CrossRefGoogle Scholar
Thompson, C. V., Annu. Rev. Mater. Res. 42, 399-434 (2012).CrossRefGoogle Scholar
Gadkari, P. R., Warren, A. P., Todi, R. M., Petrova, R. V., and Coffey, K. R., J. Vac. Sci. Tech. A 23, 1152-1161 (2005).CrossRefGoogle Scholar
Giermann, A. L. and Thompson, C. V., Appl. Phys. Lett. 86, 121903 (2005).CrossRefGoogle Scholar