A glass-ceramic borosilicate waste form is being considered for immobilization of waste streams of alkali, alkaline-earth, lanthanide, and transition metals generated by transuranic extraction for reprocessing used nuclear fuel. Waste forms are created by partial crystallization on cooling, primarily of oxyapatite and powellite phases. In-situ neutron diffraction experiments were performed to obtain detailed information about crystallization upon cooling from 1200°C. The combination of high temperatures and reactivity of borosilicate glass with typical containers used in neutron experiments, such as vanadium and niobium, prevented their use here. Therefore, methods using sealed thick-walled silica ampoules were developed for the in-situ studies. Unexpectedly, high neutron absorption, low crystal fraction, and high silica container background made quantification difficult for these high temperature measurements. As a follow-up, proof-of-concept measurements were performed on different potential high-temperature container materials, emphasizing crystalline materials so that residual glass in the waste form sample could be more easily analyzed. Room temperature measurements were conducted with a pre-crystallized sample in ‘ideal’ containers stable at low temperatures (i.e., vanadium and thin-wall silica capillaries) and compared to the same measurements in containers stable at high temperatures (i.e, platinum, single crystal sapphire, and thick-walled silica ampoules). Results suggested that Pt is probably the best choice if suitably sealed to prevent contamination from the sample after neutron activation.