Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T13:53:40.007Z Has data issue: false hasContentIssue false

Advances in the development and growth of functional materials: Toward the paradigm of materials by design

Published online by Cambridge University Press:  12 July 2012

Ram Seshadri
Affiliation:
University of California, Santa Barbara; Seshadri@mrl.ucsb.edu
Stephanie L. Brock
Affiliation:
Wayne State University, Detroit, MI; sbrock@chem.wayne.edu
Arthur Ramirez
Affiliation:
University of California, Santa Cruz; apr@ucsc.edu
M.A. Subramanian
Affiliation:
Oregon State University, Corvallis, OR; mas.subramanian@oregonstate.edu
Mark E. Thompson
Affiliation:
University of Southern California, Los Angeles; met@usc.edu
Get access

Abstract

Research in functional materials is frequently driven by a desire to make informed choices in the quest for better, more effective materials. A great deal of recent attention has been focused on the modalities of how such informed choices can themselves be made in a better, more effective manner. The examples presented here examine some of these modalities, emphasizing the nexus between new synthesis, computational design and analysis, growth in high purity forms, and finally, end-use in terms of either application or of significant property measurement. The illustrations, many drawn from the recent literature, commence with the role that theory has played, both in property prediction and concomitant materials selection, in the areas of multiferroics and topological insulators. The importance of materials quality is emphasized, using examples from observation of the fractional Quantum Hall Effect, where new science has emerged as a result of improved materials. In the area of organic electronics, prospects for advancing the field are suggested, as are future directions in nanoscience. While the examples chosen here point to developments that require a highly collaborative “systems” approach to materials, the role that serendipity plays is not ignored.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Frontiers in Crystalline Matter: From Discovery to Technology, Committee for an Assessment of and Outlook for New Materials Synthesis and Crystal Growth (National Research Council, 2009).Google Scholar
2.Materials Genome Initiative for Global Competitiveness (White House Office of Science and Technology Policy, 2011) p. 6.Google Scholar
3.Fleming, G.R., Ratner, M.A., Phys. Today 61 (7), 28 (2008).CrossRefGoogle Scholar
4.Gertner, J., “Innovation and the Bell Labs Miracle,” New York Times (February 25, 2012).Google Scholar
5.Johnson, W.C., Parsons, J.B., Crew, M.C., J. Phys. Chem. 36, 2651 (1932).CrossRefGoogle Scholar
6.Juza, R., Hahn, H., Z. Anorg. Allg. Chem. 239, 282 (1938).CrossRefGoogle Scholar
7.Schubert, E.F., Light Emitting Diodes, 2nd ed. (Cambridge University Press, UK, 2006).CrossRefGoogle Scholar
8.Nakamura, S., Mukai, T., Senoh, M., Appl. Phys. Lett. 64, 1687 (1994).CrossRefGoogle Scholar
9.Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Jpn. J. Appl. Phys. 35, 74 (1996).CrossRefGoogle Scholar
10.Spaldin, N.A., Fiebib, M., Science 309, 391 (2005).CrossRefGoogle ScholarPubMed
11.Kimura, T., Annu. Rev. Mater. Res. 37, 387 (2007).CrossRefGoogle Scholar
12.Fennie, C.J., Rabe, K.M., Phys. Rev. Lett. 97, 267602 (2006).CrossRefGoogle Scholar
13.Lee, J.H.Fang, L., Vlahos, E., Ke, X., Jung, Y.W., Fitting Kourkoutis, L., Kim, J.W., Ryan, P., Heeg, T., Roeckerath, M., Goian, V., Bernhagen, M., Uecker, R., Hammel, C., Rabe, K.M., Kamba, S., Schubert, J., Freeland, J.W., Muller, D.A., Fennie, C.J., Schiffer, P., Gopalan, V., Johnston-Halperin, E., Schlom, D.G., Nature 466, 954 (2010).CrossRefGoogle Scholar
14.Moore, J.E., Nature 464, 194 (2010).CrossRefGoogle Scholar
15.Hassan, M.Z., Kane, C.L., Rev. Mod. Phys. 82, 3045 (2010).CrossRefGoogle Scholar
16.Chadov, S., Qi, X., Kübler, J., Fecher, G.H., Felser, C., Zhang, S.C., Nat. Mater. 9, 541 (2010).CrossRefGoogle Scholar
17.Lin, H., Wray, L.A., Xia, Y., Xu, S., Jia, S., Cava, R.J., Bansil, A., Hassan, M.Z., Nat. Mater. 9, 546 (2010).CrossRefGoogle Scholar
18.Tsui, D.C., Stormer, H.L., Gossard, A.C., Phys. Rev. Lett. 48, 1559 (1982).CrossRefGoogle Scholar
19.Stormer, H.L., Chang, A., Tsui, D.C., Hwang, J.C.M., Gossard, A.C., Wiegmann, W., Phys. Rev. Lett. 50, 1953 (1983).CrossRefGoogle Scholar
20.Pan, W., Stormer, H.L., Tsui, D.C., Pfeiffer, L.N., Baldwin, K.W., West, K.W., Phys. Rev. Lett. 90, 16801 (2003).CrossRefGoogle Scholar
21.Jain, J.K., Phys. Rev. Lett. 63, 199 (1989).CrossRefGoogle Scholar
22.Hwang, H.Y., Iwasa, Y., Kawasaki, M., Keimer, B., Nagaosa, N., Tokura, Y., Nat. Mater. 11, 103 (2012).CrossRefGoogle Scholar
23.Jalan, B., Moetakef, P., Stemmer, S., Appl. Phys. Lett. 95, 032906 (2009).CrossRefGoogle Scholar
24.Son, J., Moetakef, P., Jalan, B., Bierwagen, O., Wright, N.J., Engel-Herbert, R., Stemmer, S., Nat. Mater. 9, 482 (2010).CrossRefGoogle Scholar
25.Pope, M., Kallmann, H.P., Magnante, P., J. Chem. Phys. 38, 2042 (1963).CrossRefGoogle Scholar
26.Helfrich, W., Schneidere, W.G., Phys. Rev. Lett. 14, 229 (1965).CrossRefGoogle Scholar
27.Helfrich, W., Schneidere, W.G., J. Chem. Phys. 14, 2902 (1965).Google Scholar
28.Tang, C.W., VanSlyke, S.A., Appl. Phys. Lett. 51, 913 (1987).CrossRefGoogle Scholar
29.Tang, C.W., VanSlyke, S.A., J. Appl. Phys. 65, 3610 (1989).CrossRefGoogle Scholar
30.Yersin, H., Ed., Highly Efficient OLEDs with Phosphorescent Materials (Wiley-VCH, Berlin, 2007).CrossRefGoogle Scholar
31.Thompson, M.E., Djurovich, P.E., Barlow, S., Marder, S.R., in Comprehensive Organometallic Chemistry III, Crabtree, R.H., Mingos, D.M.P., Eds. (Elsevier, Oxford, UK, 2007), Chapter 12.04.Google Scholar
32.Flamigni, L., Barbieri, A., Sabatini, C., Ventura, B., Barigelletti, F., Top. Curr. Chem. 281, 143 (2007).CrossRefGoogle Scholar
34.Ulbricht, C., Beyer, B., Freibe, C., Winter, A., Schubert, U.S., Adv. Mater. 21, 4418 (2009).CrossRefGoogle Scholar
35.Giebink, N.C., Wiederrecht, G.P., Wasielewski, M.R., Forrest, S.R., Phys. Rev. B 83, 195326 (2011).CrossRefGoogle Scholar
36.Małachowski, M., Żmija, J., Opto-Electron. Rev. 18, 121 (2010).CrossRefGoogle Scholar
37.Wu, W., Liu, Y., Zhu, D., Chem. Soc. Rev. 39, 1489 (2010).CrossRefGoogle Scholar
38.Vasquez, Y., Henkes, A.E., Bauer, J.C., Schaak, R.E., J. Solid State Chem. 181 1509 (2008).CrossRefGoogle Scholar
39.Kim, H., Achermann, M., Balet, L.P., Hollingsworth, J.A., Klimov, V.I., J. Am. Chem. Soc. 127, 544 (2005).CrossRefGoogle Scholar
40.Redl, F.X., Cho, K.-S., Murray, C.B., O’Brien, S., Nature 423, 968 (2003).CrossRefGoogle Scholar
41.Erwin, S.C., Zu, L., Haftel, M.I., Efros, A.L., Kennedy, T.A., Norris, D.J., Nature 436, 91 (2005).CrossRefGoogle Scholar
42.Nikolla, E., Schwank, J., Linic, S., J. Am. Chem. Soc. 131, 2747 (2009).CrossRefGoogle Scholar
43.Popescu, A., Datta, A., Nolas, G.S., Woods, L.M., J. Appl. Phys. 109, 103709 (2011).CrossRefGoogle Scholar
44.Milliron, D.J., Alivisatos, A.P., Pitois, C., Edder, C., Fréchet, J.M.J., Adv. Mater. 15, 58 (2003).CrossRefGoogle Scholar
45.Webber, D.H., Brutchey, R.L., J. Am. Chem. Soc. 134, 1085 (2012).CrossRefGoogle Scholar
46.Kovalenko, M.V., Scheele, M., Talapin, D.V., Science 324, 1417 (2009).CrossRefGoogle Scholar
47.Zhang, H., Hu, B., Sun, L., Hovden, R., Wise, F.W., Muller, D.A., Robinson, R.D., Nano Lett. 11, 5356 (2011).CrossRefGoogle Scholar
48.Urban, J.J., Talapin, D.V., Shevchenko, E.V., Murray, C.B., J. Am. Chem. Soc. 128, 3248 (2006).CrossRefGoogle Scholar
49.Mohanan, J.L., Arachchige, I.U., Brock, S.L., Science 307, 397 (2005).CrossRefGoogle Scholar
50.Rolison, D.R., Nazar, L.F., MRS Bull. 36, 486 (2011).CrossRefGoogle Scholar
51.Kamihara, Y., Hiramatsu, H., Hirano, M., Kawamura, R., Yanagi, H., Kamiya, T., Hosono, H., J. Am. Chem. Soc. 128, 10012 (2006).CrossRefGoogle Scholar
52.Waintal, A., Chenavas, J., C.R. Acad. Sci. Paris 264 (1967).Google Scholar
53.Pistorius, C.W.F.T., Kruger, J.G., J. Inorg. Nucl. Chem. 38, 1471 (1976).CrossRefGoogle Scholar
54.Van Aken, B.B., Meetsma, A., Palstra, T.M., Acta Crystallogr. C 57, 230 (2001).CrossRefGoogle Scholar
55.Van Aken, B.B., Palstra, T.M., Filippetti, A., Spaldin, N.A., Nat. Mater. 3, 164 (2004).CrossRefGoogle Scholar
56.Smith, A.E., Mizoguchi, H., Delaney, K., Spaldin, N.A., Sleight, A.W., Subramanian, M.A., J. Am. Chem. Soc. 131, 17084 (2009).CrossRefGoogle Scholar
57.Dixit, A., Smith, A.E., Subramanian, M.A., Lawes, G., Solid State Commun. 150, 746 (2010).CrossRefGoogle Scholar
58.Jiang, P., Li, J., Sleight, A.W., Subramanian, M.A., Inorg. Chem. 50, 5858 (2011).CrossRefGoogle Scholar
59.Smith, A.E., Sleight, A.W., Subramanian, M.A., Mater. Res. Bull. 46, 1 (2011).CrossRefGoogle Scholar