Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-07T18:15:29.812Z Has data issue: false hasContentIssue false

Architected materials for advanced electrochemical systems

Published online by Cambridge University Press:  10 October 2019

James H. Pikul
Affiliation:
the University of Pennsylvania, USA; pikul@seas.upenn.edu
Jeffrey W. Long
Affiliation:
US Naval Research Laboratory, USA; jeffrey.long@nrl.navy.mil
Get access

Abstract

Architected materials play an essential role in achieving next-generation electrochemical systems with unprecedented power and energy capabilities. The geometry and chemistry of architected materials can be engineered to address key areas of performance, including electrochemical kinetics and mechanics. Electrochemical kinetics impact key metrics such as power density, efficiency, and lifetime in batteries, fuel cells, and sensors. Additionally, electrochemical reactions can dramatically change material composition, which may result in large strains (in the hundreds of percent) that cause mechanical failure. In this article, we summarize advances in energy storage offered by architected materials and highlight fabrication methods used to realize these advances. We also discuss electrochemistry as an enabling tool for architected materials with functionality beyond energy storage and sensing.

Type
Three-Dimensional Architected Materials and Structures
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Heilbron, J.L., J. Electrochem. Soc. 124, C138 (1977).Google Scholar
Park, M., Zhang, X., Chung, M., Less, G.B., Sastry, A.M., J. Power Sources 195, 7904 (2010).CrossRefGoogle Scholar
Braun, P.V., Cho, J., Pikul, J.H., King, W.P., Zhang, H., Curr. Opin. Solid State Mater. Sci. 16, 186 (2012).CrossRefGoogle Scholar
Pikul, J.H., Braun, P.V., King, W.P., J. Electrochem. Soc. 164, E3122 (2017).CrossRefGoogle Scholar
Sun, Y., Liu, N., Cui, Y., Nat. Energy 1, 16071 (2016).CrossRefGoogle Scholar
Arthur, T.S., Bates, D.J., Cirigliano, N., Johnson, D.C., Malati, P., Mosby, J.M., Perre, E., Rawls, M.T., Prieto, A.L., Dunn, B., MRS Bull . 36, 523 (2011).CrossRefGoogle Scholar
Long, J.W., Dunn, B., Rolison, D.R., White, H.S., Chem. Rev. 104, 4463 (2004).CrossRefGoogle Scholar
Kötz, R., Carlen, M., Electrochim. Acta 45, 2483 (2000).CrossRefGoogle Scholar
Ghoniem, A.F., Prog. Energy Combust. Sci. 37, 15 (2011).CrossRefGoogle Scholar
Liu, J., Wang, J., Xu, C., Jiang, H., Li, C., Zhang, L., Lin, J., Shen, Z.X., Adv. Sci. 5, 1700322 (2018).CrossRefGoogle Scholar
Conway, B.E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer Science and Business Media, Berlin, Germany, 2013).Google Scholar
Sharma, K., Arora, A., Tripathi, S., Energy Environ. Mater. 21, 801 (2019).Google Scholar
Jiang, Y., Liu, J., Energy Environ. Mater. 2, 30 (2019).CrossRefGoogle Scholar
Augustyn, V., Simon, P., Dunn, B., Energy Environ. Sci. 7, 1597 (2014).CrossRefGoogle Scholar
Sun, H., Zhu, J., Baumann, D., Peng, L., Xu, Y., Shakir, I., Huang, Y., Duan, X., Nat. Rev. Mater. 4, 45 (2019).CrossRefGoogle Scholar
Frackowiak, E., Beguin, F., Carbon 39, 937 (2001).CrossRefGoogle Scholar
Sassin, M.B., Mansour, A.N., Pettigrew, K.A., Rolison, D.R., Long, J.W., ACS Nano 4, 4505 (2010).CrossRefGoogle Scholar
Pomerantseva, E., Gogotsi, Y., Nat. Energy 2, 17089 (2017).CrossRefGoogle Scholar
Xia, Y., Mathis, T.S., Zhao, M.-Q., Anasori, B., Dang, A., Zhou, Z., Cho, H., Gogotsi, Y., Yang, S., Nature 557, 409 (2018).CrossRefGoogle Scholar
Lukatskaya, M.R., Kota, S., Lin, Z., Zhao, M.-Q., Shpigel, N., Levi, M.D., Halim, J., Taberna, P.-L., Barsoum, M.W., Simon, P., Nat. Energy 2, 17105 (2017).CrossRefGoogle Scholar
Lukatskaya, M.R., Dunn, B., Gogotsi, Y., Nat. Commun. 7, 12647 (2016).CrossRefGoogle Scholar
Dunn, B., Kamath, H., Tarascon, J.-M., Science 334, 928 (2011).CrossRefGoogle Scholar
Sapkota, P., Kim, H., J. Ind. Eng. Chem. 15, 445 (2009).CrossRefGoogle Scholar
Cano, Z.P., Banham, D., Ye, S., Hintennach, A., Lu, J., Fowler, M., Chen, Z., Nat. Energy 3, 279 (2018).CrossRefGoogle Scholar
Li, Y., Lu, J., ACS Energy Lett. 2, 1370 (2017).CrossRefGoogle Scholar
Gnann, T., Funke, S., Jakobsson, N., Plötz, P., Sprei, F., Bennehag, A., Transp. Res. D Transp. Environ. 62, 314 (2018).CrossRefGoogle Scholar
Golodnitsky, D., Nathan, M., Yufit, V., Strauss, E., Freedman, K., Burstein, L., Gladkich, A., Peled, E., Solid State Ionics 177, 2811 (2006).CrossRefGoogle Scholar
Tang, Y., Zhang, Y., Li, W., Ma, B., Chen, X., Chem. Soc. Rev. 44, 5926 (2015).CrossRefGoogle Scholar
Martin, M.A., Chen, C.-F., Mukherjee, P.P., Pannala, S., Dietiker, J.-F., Turner, J.A., Ranjan, D., J. Electrochem. Soc. 162, A991 (2015).CrossRefGoogle Scholar
Pikul, J.H., Gang Zhang, H., Cho, J., Braun, P.V., King, W.P., Nat. Commun. 4, 1732 (2013).CrossRefGoogle Scholar
Liu, C., Gillette, E.I., Chen, X., Pearse, A.J., Kozen, A.C., Schroeder, M.A., Gregorczyk, K.E., Lee, S.B., Rubloff, G.W., Nat. Nanotechnol. 9, 1031 (2014).CrossRefGoogle Scholar
Rolison, D.R., Dunn, B., J. Mater. Chem. 11, 963 (2001).CrossRefGoogle Scholar
Zhang, H., Yu, X., Braun, P.V., Nat. Nanotechnol. 6, 277 (2011).CrossRefGoogle Scholar
Pikul, J.H., Liu, J., Braun, P.V., King, W.P., J. Power Sources 315, 308 (2016).CrossRefGoogle Scholar
Ning, H., Pikul, J.H., Zhang, R., Li, X., Xu, S., Wang, J., Rogers, J.A., King, W.P., Braun, P.V., Proc. Natl. Acad. Sci. U.S.A. 112, 6573 (2015).CrossRefGoogle Scholar
Liu, J., Zhang, H.G., Wang, J., Cho, J., Pikul, J.H., Epstein, E.S., Huang, X., Liu, J., King, W.P., Braun, P.V., Adv. Mater. 26, 7096 (2014).CrossRefGoogle Scholar
Kato, Y., Hori, S., Saito, T., Suzuki, K., Hirayama, M., Mitsui, A., Yonemura, M., Iba, H., Kanno, R., Nat. Energy 1, 16030 (2016).CrossRefGoogle Scholar
Li, J., Du, Z., Ruther, R.E., An, S.J., David, L.A., Hays, K., Wood, M., Phillip, N.D., Sheng, Y., Mao, C., JOM 69, 1484 (2017).CrossRefGoogle Scholar
Liu, J., Guan, C., Zhou, C., Fan, Z., Ke, Q., Zhang, G., Liu, C., Wang, J., Adv. Mater. 28, 8732 (2016).CrossRefGoogle ScholarPubMed
Werner, J., Rodríguez-Calero, G., Abruña, H., Wiesner, U., Energy Environ. Sci. 11, 1261 (2018).CrossRefGoogle Scholar
Zhu, C., Kopold, P., van Aken, P.A., Maier, J., Yu, Y., Adv. Mater. 28, 2409 (2016).CrossRefGoogle ScholarPubMed
Lytle, J.C., Long, J.W., Chervin, C.N., Sassin, M.B., Rolison, D.R., “3D Architectures Are Not Just for Microbatteries Anymore,” in Micro- and Nanotechnology Sensors, Systems, and Applications III (SPIE, the International Society for Optics and Photonics, Bellingham, WA, 2011), p. 80311N.CrossRefGoogle Scholar
Li, N., Chen, Z., Ren, W., Li, F., Cheng, H.-M., Proc. Natl. Acad. Sci. U.S.A. 109, 17360 (2012).CrossRefGoogle Scholar
Chen, H., Xu, H., Wang, S., Huang, T., Xi, J., Cai, S., Guo, F., Xu, Z., Gao, W., Gao, C., Sci. Adv. 3, eaa07233 (2017).Google Scholar
Anseán, D., Dubarry, M., Devie, A., Liaw, B., García, V., Viera, J., González, M., J. Power Sources 321, 201 (2016).CrossRefGoogle Scholar
Liu, S., Jiang, J., Shi, W., Ma, Z., Wang, L.Y., Guo, H., IEEE Trans. Ind. Electron. 62, 7557 (2015).CrossRefGoogle Scholar
Chen, X., Zhu, H., Chen, Y.-C., Shang, Y., Cao, A., Hu, L., Rubloff, G.W., ACS Nano 6, 7948 (2012).CrossRefGoogle Scholar
Zhang, H., Braun, P.V., Nano Lett . 12, 2778 (2012).CrossRefGoogle Scholar
Reeja-Jayan, B., Chen, N., Lau, J., Kattirtzi, J.A., Moni, P., Liu, A., Miller, I.G., Kayser, R., Willard, A.P., Dunn, B., Macromolecules 48, 5222 (2015).CrossRefGoogle Scholar
Zhang, H., Ning, H., Busbee, J., Shen, Z., Kiggins, C., Hua, Y., Eaves, J., Davis, J., Shi, T., Shao, Y.-T., Zuo, J., Hong, X., Chan, Y., Wang, S., Wang, P., Sun, P., Xu, S., Liu, J., Braun, P.V., Sci. Adv. 3, e1602427 (2017).CrossRefGoogle Scholar
Zhang, H., Shi, T., Wetzel, D.J., Nuzzo, R.G., Braun, P.V., Adv. Mater. 28, 742 (2016).CrossRefGoogle ScholarPubMed
Synodis, M.J., Kim, M., Allen, M.G., Allen, S.A.B., J. Micromech. Microeng. 29, 055006 (2019).CrossRefGoogle Scholar
Plylahan, N., Kyeremateng, N.A., Eyraud, M., Dumur, F., Martinez, H., Santinacci, L., Knauth, P., Djenizian, T., Nanoscale Res. Lett. 7, 349 (2012).CrossRefGoogle Scholar
Schnell, J., Günther, T., Knoche, T., Vieider, C., Köhler, L., Just, A., Keller, M., Passerini, S., Reinhart, G., J. Power Sources 382, 160 (2018).CrossRefGoogle Scholar
Verma, P., Maire, P., Novák, P., Electrochim. Acta 55, 6332 (2010).CrossRefGoogle Scholar
Barré, A., Deguilhem, B., Grolleau, S., Gérard, M., Suard, F., Riu, D., J. Power Sources 241, 680 (2013).CrossRefGoogle Scholar
The Internet of Things: A Movement, Not a Market (IHS Markit Ltd., London, UK, 2017).Google Scholar
Dudney, N.J., Electrochem. Soc. Interface 17, 44 (2008).Google Scholar
Lai, W., Erdonmez, C.K., Marinis, T.F., Bjune, C.K., Dudney, N.J., Xu, F., Wartena, R., Chiang, Y.-M., Adv. Mater. 22, E139 (2010).CrossRefGoogle Scholar
Cirigliano, N., Sun, G., Membreno, D., Malati, P., Kim, C., Dunn, B., Energy Technol . 2, 362 (2014).CrossRefGoogle Scholar
Reyes, C., Somogyi, R., Niu, S., Cruz, M.A., Yang, F., Catenacci, M.J., Rhodes, C.P., Wiley, B.J., ACS Appl. Energy Mater. 1, 5268 (2018).Google Scholar
Sun, K., Wei, T.S., Ahn, B.Y., Seo, J.Y., Dillon, S.J., Lewis, J.A., Adv. Mater. 25, 4539 (2013).CrossRefGoogle Scholar
Zhu, C., Fu, Y., Yu, Y., Adv. Mater. 31, 1803408 (2019).CrossRefGoogle Scholar
Debe, M.K., Nature 486, 43 (2012).CrossRefGoogle Scholar
Li, X., Sabir, I., Int. J. Hydrogen Energy 30, 359 (2005).CrossRefGoogle Scholar
Nørskov, J.K., Bligaard, T., Rossmeisl, J., Christensen, C.H., Nat. Chem. 1, 37 (2009).CrossRefGoogle Scholar
Zhang, B., Zheng, X., Voznyy, O., Comin, R., Bajdich, M., García-Melchor, M., Han, L., Xu, J., Liu, M., Zheng, L., Science 352, 333 (2016).CrossRefGoogle Scholar
Winter, M., Besenhard, J.O., Electrochim. Acta 45, 31 (1999).CrossRefGoogle Scholar
Lee, S.W., McDowell, M.T., Berla, L.A., Nix, W.D., Cui, Y., Proc. Natl. Acad. Sci. U.S.A. 109, 4080 (2012).CrossRefGoogle Scholar
Kalnaus, S., Rhodes, K., Daniel, C., J. Power Sources 196, 8116 (2011).CrossRefGoogle Scholar
Liu, X.H., Zhong, L., Huang, S., Mao, S.X., Zhu, T., Huang, J.Y., ACS Nano 6, 1522 (2012).CrossRefGoogle Scholar
Beaulieu, L., Eberman, K., Turner, R., Krause, L., Dahn, J., Electrochem. Solid-State Lett. 4, A137 (2001).CrossRefGoogle Scholar
Zhu, J., Wang, T., Fan, F., Mei, L., Lu, B., ACS Nano 10, 8243 (2016).CrossRefGoogle Scholar
Liu, Y., Zhou, G., Liu, K., Cui, Y., Acc. Chem. Res. 50, 2895 (2017).CrossRefGoogle Scholar
Li, Y., Yan, K., Lee, H.-W., Lu, Z., Liu, N., Cui, Y., Nat. Energy 1, 15029 (2016).CrossRefGoogle Scholar
Wang, H., Li, Y., Li, Y., Liu, Y., Lin, D., Zhu, C., Chen, G., Yang, A., Yan, K., Chen, H., Nano Lett . 19, 1326 (2019).CrossRefGoogle Scholar
Cui, L.-F., Hu, L., Wu, H., Choi, J.W., Cui, Y., J. Electrochem. Soc. 158, A592 (2011).CrossRefGoogle Scholar
Ryou, M.H., Kim, J., Lee, I., Kim, S., Jeong, Y.K., Hong, S., Ryu, J.H., Kim, T.S., Park, J.K., Lee, H., Adv. Mater. 25, 1571 (2013).CrossRefGoogle Scholar
Kim, I.-s., Blomgren, G., Kumta, P., J. Power Sources 130, 275 (2004).CrossRefGoogle Scholar
Zhang, Y., Huang, Y., Rogers, J.A., Curr. Opin. Solid State Mater. Sci. 19, 190 (2015).CrossRefGoogle Scholar
Song, W.J., Yoo, S., Song, G., Lee, S., Kong, M., Rim, J., Jeong, U., Park, S., Batteries Supercaps 2, 181 (2019).CrossRefGoogle Scholar
Liu, W., Song, M.S., Kong, B., Cui, Y., Adv. Mater. 29, 1603436 (2017).CrossRefGoogle Scholar
Li, B., Nie, Z., Vijayakumar, M., Li, G., Liu, J., Sprenkle, V., Wang, W., Nat. Commun. 6, 6303 (2015).CrossRefGoogle Scholar
Zhao, Y., Ding, Y., Li, Y., Peng, L., Byon, H.R., Goodenough, J.B., Yu, G., Chem. Soc. Rev. 44, 7968 (2015).CrossRefGoogle Scholar
Robb, B.H., Farrell, J.M., Marshak, M.P., Joule (2019), doi:https://doi.org/10.1016/j.joule.2019.07.002.Google Scholar
Aubin, C.A., Choudhury, S., Jerch, R., Archer, L.A., Pikul, J.H., Shepherd, R.F., Nature 571, 511 (2019).CrossRefGoogle Scholar
Parker, J.F., Chervin, C.N., Nelson, E.S., Rolison, D.R., Long, J.W., Energy Environ. Sci. 7, 1117 (2014).CrossRefGoogle Scholar
Parker, J.F., Chervin, C.N., Pala, I.R., Machler, M., Burz, M.F., Long, J.W., Rolison, D.R., Science 356, 415 (2017).CrossRefGoogle Scholar
Ko, J.S., Geltmacher, A.B., Hopkins, B.J., Rolison, D.R., Long, J.W., Parker, J.F., ACS Appl. Energy Mater. 2, 212 (2018).CrossRefGoogle Scholar
Jana, A., García, R.E., Nano Energy 41, 552 (2017).CrossRefGoogle Scholar
Cheng, X.-B., Zhang, R., Zhao, C.-Z., Zhang, Q., Chem. Rev. 117, 10403 (2017).CrossRefGoogle Scholar
Liu, J., Bao, Z., Cui, Y., Dufek, E.J., Goodenough, J.B., Khalifah, P., Li, Q., Liaw, B.Y., Liu, P., Manthiram, A., Nat. Energy 1 (2019).Google Scholar
Li, N., Wei, W., Xie, K., Tan, J., Zhang, L., Luo, X., Yuan, K., Song, Q., Li, H., Shen, C., Nano Lett . 18, 2067 (2018).CrossRefGoogle Scholar
Stein, A., Schroden, R.C., Curr. Opin. Solid State Mater. Sci. 5, 553 (2001).CrossRefGoogle Scholar
Arpin, K.A., Mihi, A., Johnson, H.T., Baca, A.J., Rogers, J.A., Lewis, J.A., Braun, P.V., Adv. Mater. 22, 1084 (2010).CrossRefGoogle Scholar
You, X., Pikul, J.H., King, W.P., Pak, J.J., Appl. Phys. Lett. 102, 253103 (2013).CrossRefGoogle Scholar
Pikul, J.H., Dai, Z., Yu, X., Zhang, H., Kim, T., Braun, P.V., King, W.P., J. Micromech. Microeng. 24, 105006 (2014).CrossRefGoogle Scholar
Pikul, J.H., Özerinç, S., Liu, B., Zhang, R., Braun, P.V., Deshpande, V.S., King, W.P., Sci. Rep. 9, 719 (2019).CrossRefGoogle Scholar
Hsain, Z., Pikul, J.H., Adv. Funct. Mater. (2019), https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201905631.Google Scholar
Xia, X., Afshar, A., Yang, H., Portela, C.M., Kockman, D.M., DiLeo, C.V., Greer, J.R., Nature 573, 205 (2019).CrossRefGoogle Scholar