Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T13:48:36.446Z Has data issue: false hasContentIssue false

Bio-Resorbable Nanoceramics for Gene and Drug Delivery

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Nanoscale ceramic particles, such as layered double hydroxides (LDHs), have been developed to deliver drugs or genes into biological cells. In this article, we describe the controlled-release properties of LDHs as drug delivery carriers, the formation of bio-LDH nanohybrids, their in vivo and in vitro cytotoxicity tests, and their potential as anticancer gene delivery carriers. Unstable biomolecules can be intercalated into LDHs, displacing the interlayer anions; the drug or gene's negative charge is thus shielded, enabling penetration into the cell. In the slightly acidic environment of the cell, ceramic nanoplatelets of ∼100 nm diameter dissolve, thus releasing the intercalates in a controlled manner.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Loweth, C.J., Caldwell, W.B., Peng, X., Alivisatos, A.P., and Schultz, P.G., Angew. Chem. Int. Ed. 38 (1999) p. 1808.3.0.CO;2-C>CrossRefGoogle Scholar
2Niemeyer, C.M., Angew. Chem. 36 (1997) p. 585.CrossRefGoogle Scholar
3Mirkin, C.A., Letsinger, R.L., Mucic, R.C., and Storhoff, J.J., Nature 382 (1996) p. 607.CrossRefGoogle Scholar
4Alivisatos, A.P., Johnsson, K.P., Peng, X., Wilson, T.E., Loweth, C.J., Bruchez, M. Jr , and Schultz, P.G., Nature 382 (1996) p. 609.CrossRefGoogle Scholar
5Bezanilla, M., Mann, S., Laney, D.E., Lyubchenko, Y.L., and Hansma, H.G., Langmuir 11 (1995) p. 655.CrossRefGoogle Scholar
6Cavani, F., Trifiro, F., and Vaccari, A., Catal. Today 11 (1991) p. 173.CrossRefGoogle Scholar
7Meyn, M., Beneke, K., and Lagaly, G., Inorg. Chem. 32 (1993) p. 1209.CrossRefGoogle Scholar
8Constantino, V.R.L. and Pinnavaia, T.J., Inorg. Chem. 34 (1995) p. 883.CrossRefGoogle Scholar
9Choy, J.H., Kwak, S.Y., Park, J.S., Jeong, Y.J., and Portier, J., J. Am. Chem. Soc. 121 (1999) p. 1399.CrossRefGoogle Scholar
10Choy, J.H., Park, J.S., Kwak, S.Y., Jeong, Y.J., and Han, Y.S., Mol. Cryst. Liq. Cryst. 341 (2000) p. 1229.Google Scholar
11Choy, J.H., Kwak, S.Y., Jeong, Y.J., and Park, J.S., Angew. Chem. 112 (2000) p. 4208.3.0.CO;2-H>CrossRefGoogle Scholar
12Khan, A.I., Lei, L., Norquist, A.J., and Ohare, D., Chem. Commun. (2001) p. 2342.Google Scholar
13Hwang, S.H., Han, Y.S., and Choy, J.H., Bull. Korean Chem. Soc. 22 (2001) p. 1019.Google Scholar
14Sinden, R.R., DNA Structure and Function (Academic Press, New York, NY, 1994).Google Scholar
15Radler, J.O., Koltover, I., Saldit, T., and Safinya, C.R., Science 275 (1997) p. 810.CrossRefGoogle Scholar
16Tunis-Schneider, M.J.B. and Maestre, M.F., J. Mol. Biol. 52 (1970) p. 521.CrossRefGoogle Scholar
17Zimmerman, S.B. and Pheiffer, B.H., J. Mol. Biol. 142 (1980) p. 315.CrossRefGoogle Scholar
18Kwak, S.Y., Kriven, W.M., Wallig, M.A., and Choy, J.H., Biomater. (2004) in press.Google Scholar
19Kwak, S.Y., Jeong, Y.J., Park, J.S., and Choy, J.H., Solid State Ionics 151 (2002) p. 229.CrossRefGoogle Scholar
20Wickstrom, E.L., Bacon, T.A., Gonzalez, A., Freeman, D.L., Lyman, G.H., and Wickstrom, E., Proc. Natl. Acad. Sci. USA 85 (1988) p. 1028.CrossRefGoogle Scholar
21Choy, J.H., Kwak, S.Y., Park, J.S., and Jeong, Y.J., J. Mater. Chem. 11 (2001) p. 1671.CrossRefGoogle Scholar
22Davis, S.S., Trends Biotechnol. 15 (1997) p. 217.CrossRefGoogle Scholar
23Verma, I.M. and Somia, N., Nature 389 (1997) p. 239.CrossRefGoogle Scholar
24Lee, R.J. and Low, P.S., J. Biol. Chem. 269 (1997) p. 3198.CrossRefGoogle Scholar
25Lee, Z.W., Kweon, S.M., Kim, B.C., Leem, S.L., Shin, I., Kim, J.H., and Ha, K.S., J. Biol. Chem. 273 (1998) p. 12710.CrossRefGoogle Scholar
26Vogel, K., Wang, S., Lee, R.J., Chmielewski, J., and Low, P.S., J. Am. Chem. Soc. 118 (1996) p. 1581.CrossRefGoogle Scholar
27Collins, S.J., Ruscetti, F.W., Gallagher, R.E., and Gallo, R.C., Proc. Natl. Acad. Sci. USA 75 (1978) p. 2458.CrossRefGoogle Scholar
28Gallagher, R., Collins, S., Trujillo, J., McCredie, K., Ahearn, M., Tsai, S., Metzgar, R., Aulakh, G., Ting, R., Ruscetti, F., and Gallo, R., Blood 54 (1979) p. 713.CrossRefGoogle Scholar
29Varmus, H.E., Chapter 9 in Molecular Basis of Blood Disease, edited by Stamatoyannopoulos, G., Nienhuis, A.W., Leder, P., and Majerus, P.W. (W.B. Saunders Co., Philadelphia, 1987) p. 271.Google Scholar