Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T13:33:37.619Z Has data issue: false hasContentIssue false

Combinatorial Experimentation and Materials Informatics

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

High-throughput experimentation is effective in systematically producing large and diverse data sets. The marriage of combinatorial materials science and informatics is a natural one, and results are beginning to emerge from the integration of elements of materials informatics with data from combinatorial libraries. We discuss data management issues in high-throughput experimentation and highlight recent examples where data-mining tools are being implemented for extracting knowledge and predicting new compounds, with an emphasis on electronic materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Xiang, X.-D. and Takeuchi, I. eds., Combinatorial Materials Syntheses (Marcel Dekker, New York, 2003).CrossRefGoogle Scholar
2Koinuma, H. and Takeuchi, I.Nat. Mater. 3 (2004) p. 429.CrossRefGoogle Scholar
3For a comparison of LIMS products, see, for example, www.limsfinder.com or www. limsource.com (accessed November 2006).Google Scholar
4Symyx Discovery Tools, www.symyx.com (accessed November 2006).Google Scholar
5Meguro, S., Ohnishi, T., Lippmaa, M. and Koinuma, H., Meas. Sci. Technol. 16 (2005) p.309.CrossRefGoogle Scholar
6MatML, schema for materials information, www.matml.org (accessed November 2006).Google Scholar
7Yoo, Y.K., Xue, Q., Chu, Y.S., Xu, S., Hangen, U., Lee, H.-C., Stein, W. and Xiang, X.-D.Intermetallics 14 (2006) p.241.CrossRefGoogle Scholar
8Takeuchi, I., Long, C.J., Famodu, O.O., Murakami, M., Hattrick-Simpers, J., Rubloff, G.W., Stukowski, M. and Rajan, K.Rev. Sci. Instrum. 76 062223 (2005).CrossRefGoogle Scholar
9Famodu, O.O., Hattrick-Simpers, J., Aronova, M., Chang, K.-S., Murakami, M., Wuttig, M., Okazaki, T., Furuya, Y. and Takeuchi, I.Mater. Trans., JIM 45 (2004) p.173.CrossRefGoogle Scholar
10Takahashi, R., Yonezawa, Y., Ohtani, M., Kawasaki, M., Nakajima, K., Chikyow, T., Koinuma, H. and Matsumoto, Y.Adv. Funct. Mater. 16 (2006) p.485.CrossRefGoogle Scholar
11Tanaka, K. and Ozaki, A.J. Catal. 8 (1967) p.1.CrossRefGoogle Scholar
12Newnham, R.E.Phase Diagrams: Material Science and Technology, Vol. 5 (Academic Press, London, UK, 1978).Google Scholar
13Kelkar, G.P. and Carim, A.H.J. Am. Ceram. Soc. 76 (1993) p.1815.CrossRefGoogle Scholar
14Scheidtmann, J., Klar, D., Saalfrank, J.W., Schmidt, T. and Maier, W.F.Quant. Struct.-Act. Relat. Combi. Sci. 24 (2005) p.203.Google Scholar
15Scheidtmann, J., Frantzen, A., Frenzer, G. and Maier, W.F.Meas. Sci. Technol. 16 (2005) p. 119.CrossRefGoogle Scholar
16Potyrailo, R.A.Angew. Chem. Int. Ed. 45 (2004) p.702.CrossRefGoogle Scholar
17Farrusseng, D., Klanner, C., Baumes, L., Lengliz, M., Mirodatos, C. and Schuth, F.Quant. Struct.-Act. Relat. Combi. Sci. 24 (2005) p.78.Google Scholar
18Klanner, C., Farrusseng, D., Baumes, L., Lengliz, M., Mirodatos, C. and Schuth, F.Angew. Chem. Int. Ed. 43 (2004) p.5347.CrossRefGoogle Scholar