Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-01T06:21:19.997Z Has data issue: false hasContentIssue false

Cosmic-Ray Neutrons on the Ground and in the Atmosphere

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Neutrons from collisions of cosmic rays with the nuclei of atoms in the atmosphere are an irremovable external radiation that causes single-event upsets in microelectronic devices. Predicting soft error rates requires knowledge of the flux and energy distribution of the cosmic-ray-induced neutrons. This article reviews cosmic-ray neutrons in the atmosphere and on the ground, the factors that determine their intensity, and recent calculations and state-of-the-art measurements of neutron spectra covering 12 decades of energy, from the thermal energy range up to 10 GeV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.IBM J. Res. Develop. 40 (1) (1996).Google Scholar
2.Reitz, G., Radiat. Prot. Dosim. 48 (1993) p. 5.Google Scholar
3.Clem, J.M., Clements, D.P., Esposito, J., Evenson, P., Huber, D., 'Heureux, J., Meyer, P., and Constantin, C., Astrophys. J. 464 (1996) p. 507.CrossRefGoogle Scholar
4.Gaisser, T.K., Cosmic Rays and Particle Physics (Cambridge University Press, Cambridge, 1990).Google Scholar
5. Bartol Research Institute Neutron Monitor Web site, http://www.bartol.udel.edu/—neutronm, then click on Solar Modulation (accessed November 2002).Google Scholar
6. University of New Hampshire Neutron Monitor Web site, http://ulysses.sr.unh.edu/NeutronMonitor/Misc/neutron2.html, then click on *1950–2002 under Plots (accessed November 2002).Google Scholar
7.Wilson, J.W., Nealy, J.E., Cucinotta, F.A., Shinn, J.L., Hajnal, F., Reginatto, M., and Gold-hagen, P., Radiation Safety Aspects of Commercial High-Speed Flight Transportation, NASA Technical Paper 3524 (National Technical Information Service, Springfield, VA, 1995).Google Scholar
8.Clem, J.M., Bieber, J.W., Evenson, P., Hall, D., Humble, J.E., and Duldig, M., J. Geophys. Res. 102 (1997) p. 26919.CrossRefGoogle Scholar
9.Stoker, P.H., in Proc. 24th Int. Conf. on Cosmic Rays, Vol. 4 (Copernicus Gesellschaft, 1995) p. 1082.Google Scholar
10.Clem, J. and Dorman, L., Space Sci. Rev. 93 (2000) p. 335.CrossRefGoogle Scholar
11.Ziegler, J.F., “Terrestrial Cosmic Ray Intensities,” IBM J. Res. Dev. 42 (1) (1998) p. 117, available at www.research.ibm.com/journal/rd/421/ziegler.html (accessed November 2002).CrossRefGoogle Scholar
12.Goldhagen, P., Health Phys. 79 (2000) p. 526.CrossRefGoogle Scholar
13.Grieder, P.K.F., Cosmic Rays at Earth: Researchers Reference Manual and Data Book (Else-vier, Amsterdam, 2001).Google Scholar
14.Foelsche, T., Mendell, R.B., Wilson, J.W., and Adams, R.R., Measured and Calculated Neutron Spectra and Dose Equivalent Rates at High Altitudes: Relevance to SST Operations and Space Research, NASA Technical Note D-7715 (National Technical Information Service, Springfield, VA, 1974).Google Scholar
15.Wilson, J.W., Townsend, L.W., Schimmerling, W., Khandelwal, G.S., Khan, F., Nealy, J.E., Cucinotta, F.A., Simonsen, L.C., Shinn, J.L., and Norbury, J.W., in Transport Methods and Interactions for Space Radiations, NASA Reference Publication 1257 (National Technical Information Service, Springfield, VA, 1991) p. 519.Google Scholar
16.O'Brien, K., LUIN, a Code for the Calculation of Cosmic Ray Propagation in the Atmosphere (Update of HASL-275), U.S. Department of Energy Technical Report EML-338 (National Technical Information Service, Springfield, VA, 1978).Google Scholar
17.O'Brien, K. and Friedberg, F., Environ. Int. 20 (1994) p. 645.CrossRefGoogle Scholar
18.Normand, E. and Baker, T.J., IEEE Trans. Nucl. Sci. 40 (1993) p. 1484.CrossRefGoogle Scholar
19.Normand, E., IEEE Trans. Nucl. Sci. 43 (1996) p. 461.CrossRefGoogle Scholar
20.International Commission on Radiological Protection, Annals of the ICRP 21, IRP Publication 60 (Pergamon Press, Elmsford, NY, 1991).Google Scholar
21.Fasso, A., Ferrari, A., Ranft, A., and Sala, P.R., in Proc. Third Workshop on Simulating Accelerator Radiation Environments (SARE-3), edited by Hirayama, H. (KEK, Tsukuba, Japan, 1997) p. 32.Google Scholar
22.Roesler, S., Heinrich, W., and Schraube, H., Radiat. Prot. Dosim. 98 (2002) p. 37.CrossRefGoogle Scholar
23.Ferrari, A., Pelliccioni, M., and Rancati, T., Radiat. Prot. Dosim. 93 (2001) p. 101.CrossRefGoogle Scholar
24.Goldhagen, P., Reginatto, M., Kniss, T., Wilson, J.W., Singleterry, R.C., Jones, I.W., and Van Steveninck, W., Nucl. Instrum. Methods A 476 (2002) p. 42.CrossRefGoogle Scholar
25.Goldhagen, P., Clem, J.M., and Wilson, J.W., Adv. Space Res. in press.Google Scholar
26.Bramblett, R.L., Ewing, R.I., and Bonner, T.W., Nucl. Instrum. Methods 9 (1960) p. 1.CrossRefGoogle Scholar
27.Thomas, D.J. and Alevra, A.V., Nucl. Instrum. Methods A 476 (2002) p. 12.CrossRefGoogle Scholar
28.Waters, L.S., ed., MCNPX User's Manual, Version 2.3.0, Report LA-UR 02–2607 (Los Alamos National Laboratory, Los Alamos, NM, April 2002).Google Scholar
29.Reginatto, M. and Goldhagen, P., MAXED, A Computer Code for the Deconvolution of Multi-sphere Neutron Spectrometer Data Using the Maximum Entropy Method, U.S. Department of Energy Environmental Measurements Laboratory Technical Report EML-595 (1998), available on-line at www.eml.doe.gov/publications/reports (accessed November 2002).CrossRefGoogle Scholar
30.Reginatto, M. and Goldhagen, P., Health Phys. 77 (1999) p. 579.CrossRefGoogle Scholar
31.Roesler, S. (private communication).Google Scholar
32.Clem, J.M., De Angelis, G., Goldhagen, P., and Wilson, J.W., Adv. Space Res. in press.Google Scholar