Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T21:11:30.443Z Has data issue: false hasContentIssue false

A Diffusion Multiple Approach for the Accelerated Design of Structural Materials

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

A diffusion multiple is an assembly of three or more different metal blocks, in intimate interfacial contact, that is subjected to a high temperature to allow thermal interdiffusion. The power of using a diffusion multiple approach in the efficient mapping of phase diagrams and materials properties for multicomponent alloy systems is illustrated in this article using several examples. It is now possible to map phase diagrams and materials properties at an efficiency some 3 orders of magnitude higher than the conventional one-alloy-at-a-time approach. With this high efficiency, many critical materials data that otherwise would be too time-consuming and expensive to acquire can be obtained and employed to accelerate our understanding of a system's materials physics and chemistry. It is postulated that coupling the diffusion multiple approach with the CALPHAD (calculation of phase diagrams) method will have a significant impact on the computational design of materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7 (1992) p. 1564.CrossRefGoogle Scholar
2.Doerner, M.F. and Nix, W.D., J. Mater. Res. 1 (1986) p. 601.CrossRefGoogle Scholar
3.Zhao, J.-C., Adv. Eng. Mater. 3 (2001) p. 143.3.0.CO;2-F>CrossRefGoogle Scholar
4.Zhao, J.-C., J. Mater. Res. 16 (2001) p. 1565.CrossRefGoogle Scholar
5.Hasebe, M. and Nishizawa, T., in Application of Phase Diagrams in Metallurgy and Ceramics, Vol. 2, NBS Special Publication 496, edited by Carter, G.C. (National Bureau of Standards, Gaithersburg, MD, 1978) p. 911.Google Scholar
6.Jin, Z., Scand. J. Metall. 10 (1981) p. 279.Google Scholar
7.Zhao, J.-C. and Jin, Z., Z. Metallkd. 81 (1990) p. 247.Google Scholar
8.Pharr, G.M., Mater. Sci. Eng., A 253 (1998) p. 151.CrossRefGoogle Scholar
9.Schwartz, A.J., Kumar, M., and Adams, B.L., eds., Electron Backscatter Diffraction in Materials Science (Kluwer Academic/Plenum Publishers, New York, 2000).CrossRefGoogle Scholar
10.Zhao, J.-C., Jackson, M.R., Peluso, L.A., and Brewer, L., JOM 54 (10) (2002) in press.Google Scholar
11.Zhao, J.-C., Jackson, M.R., and Darolia, R. (unpublished).Google Scholar
12.Kaufman, L. and Bernstein, H., Computer Calculation of Phase Diagrams with Special Reference to Refractory Materials (Academic Press, New York, 1970).Google Scholar
13.Saunders, N. and Miodownik, A.P., CALPHAD (Elsevier Science, New York, 1998).Google Scholar
14.Campbell, C.E., Boettinger, W.J., and Kattner, U.R., Acta Mater. 50 (2002) p. 775.CrossRefGoogle Scholar
15.Zhao, J.-C. and Henry, M.F., JOM 54 (1) (2002) p. 37.CrossRefGoogle Scholar
16.Cahn, R.W., MRS Bull. 25 (9) (2000) p. 59.CrossRefGoogle Scholar
17.Westbrook, J.H., in Deformation in Solids, Vol. 10, edited by Nabarro, F.R.N. and Duesbery, M.S. (North-Holland, Amsterdam, 1996) p. 1.Google Scholar
18.Westbrook, J.H. (private communication).Google Scholar
19.Zhao, J.-C., Jackson, M.R., Bewlay, B.P., and Peluso, L. (unpublished).Google Scholar
20.Bewlay, B.P., Jackson, M.R., and Gigliotti, M.F.X., in Intermetallic Compounds Principles and Practice: Progress, Vol. 3, edited by Westbrook, J.H. and Fleischer, R.L. (John Wiley & Sons, New York, 2002) p. 541.CrossRefGoogle Scholar
21.Balsone, S.J., Bewlay, B.P., Jackson, M.R., Subramanian, P.R., Zhao, J.-C., Chatterjee, A., and Heffernan, T., in Structural Intermetallics 2001, edited by Hemker, K., Dimiduk, D.M., Clemens, H., Darolia, R., Inui, H., Larsen, J.M., Sikka, V.K., Thomas, M., and Whittenberger, J.D. (The Minerals, Metals and Materials Society, Warrendale, PA, 2001) p. 99.Google Scholar
22.Sohn, Y.H. and Zhao, J.-C. (unpublished).Google Scholar
23.Lu, Z.W., Klein, B.M., and Zunger, A., J. Phase Equilib. 16 (1995) p. 36.CrossRefGoogle Scholar
24.Kiselyova, N.N., in Intermetallic Compounds Principles and Practice: Progress, Vol. 3, edited by Westbrook, J.H. and Fleischer, R.L. (John Wiley & Sons, New York, 2002) p. 811.CrossRefGoogle Scholar
25.Naka, S. and Khan, T., in Intermetallic Compounds Principles and Practice: Progress, Vol. 3, edited by Westbrook, J.H. and Fleischer, R.L. (John Wiley & Sons, New York, 2002) p. 841.CrossRefGoogle Scholar
26.Cohen-Adad, M.Th., Gharbi, M., Goutaudier, C., and Cohen-Adad, R., J. Alloys Compd. 289 (1999) p. 185.CrossRefGoogle Scholar
27.Cohen-Adad, M.Th., Laversenne, L., Gharbi, M., Goutaudier, C., Boulon, G., and Cohen-Adad, R., J. Phase Equilib. 22 (2001) p. 379.CrossRefGoogle Scholar
28.Laversenne, L., Guyot, Y., Goutaudier, C., Cohen-Adad, M.Th., and Boulon, G., Opt. Mater. 16 (2001) p. 475.CrossRefGoogle Scholar
29.Ikeda, O., Ohnuma, I., Kainuma, R., and Ishida, K., Intermetallics 9 (2001) p. 755.CrossRefGoogle Scholar
30.Kennedy, K., Stefansky, T., Davy, G., Zackay, V.F., and Parker, E.R., J. Appl. Phys. 36 (1965) p. 3808.CrossRefGoogle Scholar
31.Xiang, X.-D., Sun, X.-D., Briceño, G., Lou, Y., Wang, K.-A., Chang, H., Wallace-Freedman, W.G., Chen, S.W., and Schultz, P.G., Science 268 (1995) p. 1738.CrossRefGoogle Scholar
32.van Dover, R.B., Schneemeyer, L.F., and Fleming, R.M., Nature 392 (1998) p. 162.CrossRefGoogle Scholar
33.Xiang, X.-D., Annu. Rev. Mater. Sci. 29 (1999) p. 149.CrossRefGoogle Scholar
34.Yoo, Y.K., Duewer, F.W., Yang, H., Yi, D., Li, J.-W., and Xiang, X.-D., Nature 406 (2000) p. 704.CrossRefGoogle Scholar
35.Yoo, Y.K., Ohnishi, T., Wang, G., Duewer, F.W., Xiang, X.-D., Chu, Y.-S., Mancini, D.C., Li, Y.-Q., and O'Handley, R.C., Intermetallics 9 (2001) p. 541.CrossRefGoogle Scholar
36.Groves, J.F., Mattausch, G., Morgner, H., Hass, D.D., and Wadley, H.N.G., Surf. Eng. 16 (2000) p. 461.Google Scholar
37.Cremer, R., Dondorf, S., Hauck, M., Horbach, D., Kaiser, M., Kyrsta, S., Kyrylov, O., Munstermann, E., Philipps, M., Reichert, K., and Strauch, G., Z. Metallkd. 92 (2001) p. 1120.Google Scholar
38.Roebuck, B., Stewart, M., Morrell, R., and Gee, M., Mater. World 9 (11) (2001) p. 16.Google Scholar