Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T18:47:22.997Z Has data issue: false hasContentIssue false

Elastic strain engineering of ferroic oxides

Published online by Cambridge University Press:  12 February 2014

Darrell G. Schlom
Affiliation:
Department of Materials Science and Engineering, Cornell University and Kavli Institute at Cornell for Nanoscale Science; schlom@cornell.edu
Long-Qing Chen
Affiliation:
Millennium Science Complex, Materials Research Institute, Penn State University; lqc3@psu.edu
Craig J. Fennie
Affiliation:
School of Applied and Engineering Physics, Cornell University; fennie@cornell.edu
Venkatraman Gopalan
Affiliation:
Materials Science and Engineering, Penn State University; vgopalan@psu.edu
David A. Muller
Affiliation:
School of Applied and Engineering Physics, Cornell University andKavli Institute at Cornell forNanoscale Science, Cornell; dm24@cornell.edu
Xiaoqing Pan
Affiliation:
Department of Materials Science and Engineering, University of Michigan; panx@umich.edu
Ramamoorthy Ramesh
Affiliation:
Oak Ridge National Laboratory; rameshr@ornl.gov
Reinhard Uecker
Affiliation:
Leibniz Institute for Crystal Growth, Berlin; reinhard.uecker@ikz-berlin.de
Get access

Abstract

Using epitaxy and the misfit strain imposed by an underlying substrate, it is possible to elastically strain oxide thin films to percent levels—far beyond where they would crack in bulk. Under such strains, the properties of oxides can be dramatically altered. In this article, we review the use of elastic strain to enhance ferroics, materials containing domains that can be moved through the application of an electric field (ferroelectric), a magnetic field (ferromagnetic), or stress (ferroelastic). We describe examples of transmuting oxides that are neither ferroelectric nor ferromagnetic in their unstrained state into ferroelectrics, ferromagnets, or materials that are both at the same time (multiferroics). Elastic strain can also be used to enhance the properties of known ferroic oxides or to create new tunable microwave dielectrics with performance that rivals that of existing materials. Results show that for thin films of ferroic oxides, elastic strain is a viable alternative to the traditional method of chemical substitution to lower the energy of a desired ground state relative to that of competing ground states to create materials with superior properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lindh, A.E., in Nobel Lectures in Physics 1942–1962 (World Scientific, Singapore, 1998), pp. 4952.Google Scholar
Lock, J.M., Philos. Trans. R. Soc. London, Ser. A 208, 391 (1951).Google Scholar
Forsbergh, P.W. Jr., Phys. Rev. 93, 686 (1954).Google Scholar
Nguyen, L.D., Brown, A.S., Thompson, M.A., Jelloian, L.M., IEEE Trans. Electron Devices 39, 2007 (1992).CrossRefGoogle Scholar
Welser, J., Hoyt, J.L., Gibbons, J.F., IEEE Electron Device Lett. 15, 100 (1994).CrossRefGoogle Scholar
Shockley, W., Bardeen, J., Phys. Rev. 77, 407 (1950).CrossRefGoogle Scholar
Sato, H., Naito, M., Physica C 274, 221 (1997).Google Scholar
Bozovic, I., Logvenov, G., Belca, I., Narimbetov, B., Sveklo, I., Phys. Rev. Lett. 89, 107001 (2002).Google Scholar
Beach, R.S., Borchers, J.A., Matheny, A., Erwin, R.W., Salamon, M.B., Everitt, B., Pettit, K., Rhyne, J.J., Flynn, C.P., Phys. Rev. Lett. 70, 3502 (1993).Google Scholar
Gan, Q., Rao, R.A., Eom, C.B., Garrett, J.L., Lee, M., Appl. Phys. Lett. 72, 978 (1998).CrossRefGoogle Scholar
Fuchs, D., Arac, E., Pinta, C., Schuppler, S., Schneider, R., Löhneysen, H.v., Phys. Rev. B. 77, 014434 (2008).Google Scholar
Haeni, J.H., Irvin, P., Chang, W., Uecker, R., Reiche, P., Li, Y.L., Choudhury, S., Tian, W., Hawley, M.E., Craigo, B., Tagantsev, A.K., Pan, X.Q., Streiffer, S.K., Chen, L.Q., Kirchoefer, S.W., Levy, J., Schlom, D.G., Nature 430, 758 (2004).CrossRefGoogle Scholar
Choi, K.J., Biegalski, M.D., Li, Y.L., Sharan, A., Schubert, J., Uecker, R., Reiche, P., Chen, Y.B., Pan, X.Q., Gopalan, V., Chen, L.-Q., Schlom, D.G., Eom, C.B., Science 306, 1005 (2004).Google Scholar
Schlom, D.G., Chen, L.Q., Eom, C.B., Rabe, K.M., Streiffer, S.K., Triscone, J.-M., Annu. Rev. Mater. Res. 37, 589 (2007).CrossRefGoogle Scholar
Warusawithana, M.P., Cen, C., Sleasman, C.R., Woicik, J.C., Li, Y.L., Kourkoutis, L.F., Klug, J.A., Li, H., Ryan, P., Wang, L.-P., Bedzyk, M., Muller, D.A., Chen, L.Q., Levy, J., Schlom, D.G., Science 324, 367 (2009).CrossRefGoogle Scholar
Lee, J.H., Fang, L., Vlahos, E., Ke, X., Jung, Y.W., Kourkoutis, L.F., Kim, J.-W., Ryan, P.J., Heeg, T., Roeckerath, M., Goian, V., Bernhagen, M., Uecker, R., Hammel, P.C., Rabe, K.M., Kamba, S., Schubert, J., Freeland, J.W., Muller, D.A., Fennie, C.J., Schiffer, P., Gopalan, V., Johnston-Halperin, E., Schlom, D.G., Nature 466, 954 (2010).CrossRefGoogle Scholar
Adamo, C., Ke, X., Wang, H.Q., Xin, H.L., Heeg, T., Hawley, M.E., Zander, W., Schubert, J., Schiffer, P., Muller, D.A., Maritato, L., Schlom, D.G., Appl. Phys. Lett. 95, 112504 (2009).Google Scholar
Béa, H., Dupé, B., Fusil, S., Mattana, R., Jacquet, E., Warot-Fonrose, B., Wilhelm, F., Rogalev, A., Petit, S., Cros, V., Anane, A., Petroff, F., Bouzehouane, K., Geneste, G., Dkhil, B., Lisenkov, S., Ponomareva, I., Bellaiche, L., Bibes, M., Barthélémy, A., Phys. Rev. Lett. 102, 217603 (2009).CrossRefGoogle Scholar
Infante, I.C., Lisenkov, S., Dupé, B., Bibes, M., Fusil, S., Jacquet, E., Geneste, G., Petit, S., Courtial, A., Juraszek, J., Bellaiche, L., Barthélémy, A., Dkhil, B., Phys. Rev. Lett. 105, 057601 (2010).CrossRefGoogle Scholar
Chen, Z., Luo, Z., Huang, C., Qi, Y., Yang, P., You, L., Hu, C., Wu, T., Wang, J., Gao, C., Sritharan, T., Chen, L., Adv. Funct. Mater. 21, 133 (2011).CrossRefGoogle Scholar
Zeches, R.J., Rossell, M.D., Zhang, J.X., Hatt, A.J., He, Q., Yang, C.-H., Kumar, A., Wang, C.H., Melville, A., Adamo, C., Sheng, G., Chu, Y.-H., Ihlefeld, J.F., Erni, R., Ederer, C., Gopalan, V., Chen, L.Q., Schlom, D.G., Spaldin, N.A., Martin, L.W., Ramesh, R., Science 326, 977 (2009).Google Scholar
Chen, P., Podraza, N.J., Xu, X.S., Melville, A., Vlahos, E., Gopalan, V., Ramesh, R., Schlom, D.G., Musfeldt, J.L., Appl. Phys. Lett. 96, 131907 (2010).Google Scholar
Christen, H.M., Nam, J.H., Kim, H.S., Hatt, A.J., Spaldin, N.A., Phys. Rev. B 83, 144107 (2011).CrossRefGoogle Scholar
Martin, L.W., Schlom, D.G., Curr. Opin. Solid State Mater. Sci. 16, 199 (2012).CrossRefGoogle Scholar
Griffith, A.A., Philos. Trans. R. Soc. London, Ser. A 221, 163 (1920).Google Scholar
Klokholm, E., Matthews, J.W., Mayadas, A.F., Angilello, J., in Magnetism and Magnetic Materials, Graham, C.D. Jr., Rhyne, J.J., Eds. (American Institute of Physics, New York, 1972), pp. 105109.Google Scholar
Freund, L.B., Suresh, S., Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge University Press, Cambridge, 2003), pp. 6083, 283–290, 396–416.Google Scholar
Pertsev, N.A., Tagantsev, A.K., Setter, N., Phys. Rev. B 61, R825 (2000).Google Scholar
Pertsev, N.A., Tagantsev, A.K., Setter, N., Phys. Rev. B 65, 219901 (2002).Google Scholar
Devonshire, A.F., Philos. Mag. 3 (Suppl.), 85 (1954).Google Scholar
Antons, A., Neaton, J.B., Rabe, K.M., Vanderbilt, D., Phys. Rev. B 71, 024102 (2005).CrossRefGoogle Scholar
Li, Y.L., Choudhury, S., Haeni, J.H., Biegalski, M.D., Vasudevarao, A., Sharan, A., Ma, H.Z., Levy, J., Gopalan, V., Trolier-McKinstry, S., Schlom, D.G., Jia, Q.X., Chen, L.Q., Phys. Rev. B 73, 184112 (2006).CrossRefGoogle Scholar
Canedy, C.L., Li, H., Alpay, S.P., Salamanca-Riba, L., Roytburd, A.L., Ramesh, R., Appl. Phys. Lett. 77, 1695 (2000).CrossRefGoogle Scholar
Misirlioglu, I.B., Vasiliev, A.L., Aindow, M., Alpay, S.P., Ramesh, R., Appl. Phys. Lett. 84, 1742 (2004).CrossRefGoogle Scholar
Chu, M.-W., Szafraniak, I., Scholz, R., Harnagea, C., Hesse, D., Alexe, M., Gösele, U., Nature Mater. 3, 87 (2004).CrossRefGoogle Scholar
Alpay, S.P., Misirlioglu, I.B., Nagarajan, V., Ramesh, R., Appl. Phys. Lett. 85, 2044 (2004).Google Scholar
Nagarajan, V., Jia, C.L., Kohlstedt, H., Waser, R., Misirlioglu, I.B., Alpay, S.P., Ramesh, R., Appl. Phys. Lett. 86, 192910 (2005).CrossRefGoogle Scholar
Biegalski, M.D., Fong, D.D., Eastman, J.A., Fuoss, P.H., Streiffer, S.K., Heeg, T., Schubert, J., Tian, W., Nelson, C.T., Pan, X.Q., Hawley, M.E., Bernhagen, M., Reiche, P., Uecker, R., Trolier-McKinstry, S., Schlom, D.G., J. Appl. Phys. 104, 114109 (2008).Google Scholar
Uecker, R., Wilke, H., Schlom, D.G., Velickov, B., Reiche, P., Polity, A., Bernhagen, M., Rossberg, M., J. Cryst. Growth 295, 84 (2006).Google Scholar
Uecker, R., Velickov, B., Klimm, D., Bertram, R., Bernhagen, M., Rabe, M., Albrecht, M., Fornari, R., Schlom, D.G., J. Cryst. Growth 310, 2649 (2008).Google Scholar
Uecker, R., Klimm, D., Bertram, R., Bernhagen, M., Schulze-Jonack, I., Brützam, M., Kwasniewski, A., Gesing, T.M., Schlom, D.G., Acta Phys. Pol. A 124, 295 (2013).CrossRefGoogle Scholar
Lempicki, A., Randles, M.H., Wisniewski, D., Balcerzyk, M., Brecher, C., Wojtowicz, A.J., IEEE Trans. Nucl. Sci. 42, 280 (1995).Google Scholar
Petrosyan, A.G., Shirinyan, G.O., Pedrini, C., Durjardin, C., Ovanesyan, K.L., Manucharyan, R.G., Butaeva, T.I., Derzyan, M.V., Cryst. Res. Technol. 33, 241 (1998).3.0.CO;2-N>CrossRefGoogle Scholar
Asano, H., Kubo, S., Michikami, O., Satoh, M., Konaka, T., Jpn. J. Appl. Phys., Part 2 29, L1452 (1990).Google Scholar
Brown, R., Pendrick, V., Kalokitis, D., Chai, B.H.T., Appl. Phys. Lett. 57, 1351 (1990).CrossRefGoogle Scholar
Miyazawa, Y., Toshima, H., Morita, S., J. Cryst. Growth 128, 668 (1993).Google Scholar
Berkstresser, G.W., Valentino, A.J., Brandle, C.D., J. Cryst. Growth 109, 467 (1991).CrossRefGoogle Scholar
Berkstresser, G.W., Valentino, A.J., Brandle, C.D., J. Cryst. Growth 128, 684 (1993).CrossRefGoogle Scholar
Hontsu, S., Ishii, J., Kawai, T., Kawai, S., Appl. Phys. Lett. 59, 2886 (1991).CrossRefGoogle Scholar
Mateika, D., Kohler, H., Laudan, H., Volkel, E., J. Cryst. Growth 109, 447 (1991).Google Scholar
Simon, R.W., Platt, C.E., Lee, A.E., Lee, G.S., Daly, K.P., Wire, M.S., Luine, J.A., Urbanik, M., Appl. Phys. Lett. 53, 2677 (1988).CrossRefGoogle Scholar
Berkstresser, G.W., Valentino, A.J., Brandle, C.D., J. Cryst. Growth 109, 457 (1991).CrossRefGoogle Scholar
Chakoumakos, B.C., Schlom, D.G., Urbanik, M., Luine, J., J. Appl. Phys. 83, 1979 (1998).CrossRefGoogle Scholar
Sandstrom, R.L., Giess, E.A., Gallagher, W.J., Segmüller, A., Cooper, E.I., Chisholm, M.F., Gupta, A., Shinde, S., Laibowitz, R.B., Appl. Phys. Lett. 53, 1874 (1988).CrossRefGoogle Scholar
Merker, L., US Patent No. 2,684,910 (27 July 1954).Google Scholar
Bednorz, J.G., Scheel, H.J., J. Cryst. Growth 41, 5 (1977).Google Scholar
Nabokin, P.I., Souptel, D., Balbashov, A.M., J. Cryst. Growth 250, 397 (2003).CrossRefGoogle Scholar
Scheel, H.J., Bednorz, J.G., Dill, P., Ferroelectrics 13, 507 (1976).CrossRefGoogle Scholar
Lim, S.-G., Kriventsov, S., Jackson, T.N., Haeni, J.H., Schlom, D.G., Balbashov, A.M., Uecker, R., Reiche, P., Freeouf, J.L., Lucovsky, G., J. Appl. Phys. 91, 4500 (2002).CrossRefGoogle Scholar
Soukiassian, A., Tian, W., Vaithyanathan, V., Haeni, J.H., Chen, L.Q., Xi, X.X., Schlom, D.G., Tenne, D.A., Sun, H.P., Pan, X.Q., Choi, K.J., Eom, C.B., Li, Y.L., Jia, Q.X., Constantin, C., Feenstra, R.M., Bernhagen, M., Reiche, P., Uecker, R., J. Mater. Res. 23, 1417 (2008).Google Scholar
Feenstra, R., Boatner, L.A., Budai, J.D., Christen, D.K., Galloway, M.D., Poker, D.B., Appl. Phys. Lett. 54, 1063 (1989).Google Scholar
Yang, J.C., He, Q., Suresha, S.J., Kuo, C.Y., Peng, C.Y., Haislmaier, R.C., Motyka, M.A., Sheng, G., Adamo, C., Lin, H.J., Hu, Z., Chang, L., Tjeng, L.H., Arenholz, E., Podraza, N.J., Bernhagen, M., Uecker, R., Schlom, D.G., Gopalan, V., Chen, L.Q., Chen, C.T., Ramesh, R., Chu, Y.H., Phys. Rev. Lett. 109, 247606 (2012).Google Scholar
Coh, S., Heeg, T., Haeni, J.H., Biegalski, M.D., Lettieri, J., Edge, L.F., O’Brien, K.E., Bernhagen, M., Reiche, P., Uecker, R., Trolier-McKinstry, S., Schlom, D.G., Vanderbilt, D., Phys. Rev. B 82, 064101 (2010).CrossRefGoogle Scholar
Ovanesyan, K.L., Petrosyan, A.G., Shirinyan, G.O., Pedrini, C., Zhang, L., J. Cryst. Growth 198, 497 (1999).Google Scholar
Biegalski, M.D., Jia, Y., Schlom, D.G., Trolier-McKinstry, S., Streiffer, S.K., Sherman, V., Uecker, R., Reiche, P., Appl. Phys. Lett. 88, 192907 (2006).Google Scholar
Ihlefeld, J.F., Tian, W., Liu, Z.-K., Doolittle, W.A., Bernhagen, M., Reiche, P., Uecker, R., Ramesh, R., Schlom, D.G., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1528 (2009).CrossRefGoogle Scholar
Lee, J.H., Ke, X., Misra, R., Ihlefeld, J.F., Xu, X.S., Mei, Z.G., Heeg, T., Roeckerath, M., Schubert, J., Liu, Z.K., Musfeldt, J.L., Schiffer, P., Schlom, D.G., Appl. Phys. Lett. 96, 262905 (2010).Google Scholar
Irvin, P., Levy, J., Haeni, J.H., Schlom, D.G., Appl. Phys. Lett. 88, 042902 (2006).CrossRefGoogle Scholar
Ma, H.Z., Levy, J., Biegalski, M.D., Trolier-McKinstry, S., Schlom, D.G., J. Appl. Phys. 105, 014102 (2009).CrossRefGoogle Scholar
Vasudevarao, A., Kumar, A., Tian, L., Haeni, J.H., Li, Y.L., Eklund, C.-J., Jia, Q.X., Uecker, R., Reiche, P., Rabe, K.M., Chen, L.Q., Schlom, D.G., Gopalan, V., Phys. Rev. Lett. 97, 257602 (2006).Google Scholar
Vasudevarao, A., Denev, S., Biegalski, M.D., Li, Y.L., Chen, L.Q., Trolier-McKinstry, S., Schlom, D.G., Gopalan, V., Appl. Phys. Lett. 92, 192902 (2008).Google Scholar
Denev, S., Kumar, A., Biegalski, M.D., Jang, H.W., Folkman, C.M., Vasudevarao, A., Han, Y., Reaney, I.M., Trolier-McKinstry, S., Eom, C.B., Schlom, D.G., Gopalan, V., Phys. Rev. Lett. 100, 257601 (2008).Google Scholar
Biegalski, M.D., Vlahos, E., Sheng, G., Li, Y.L., Bernhagen, M., Reiche, P., Uecker, R., Streiffer, S.K., Chen, L.Q., Gopalan, V., Schlom, D.G., Trolier-McKinstry, S., Phys. Rev. B 79, 224117 (2009).CrossRefGoogle Scholar
Nuzhnyy, D., Petzelt, J., Kamba, S., Kužel, P., Kadlec, C., Bovtun, V., Kempa, M., Schubert, J., Brooks, C.M., Schlom, D.G., Appl. Phys. Lett. 95, 232902 (2009).CrossRefGoogle Scholar
Lee, C.H., Skoromets, V., Biegalski, M.D., Lei, S., Haislmaier, R., Bernhagen, M., Uecker, R., Xi, X.X., Gopalan, V., Martí, X., Kamba, S., Kužel, P., Schlom, D.G., Appl. Phys. Lett. 102, 082905 (2013).Google Scholar
Hubbard, K.J., Schlom, D.G., J. Mater. Res. 11, 2757 (1996).CrossRefGoogle Scholar
Schlom, D.G., Guha, S., Datta, S., MRS Bull. 33, 1017 (2008).Google Scholar
Kourkoutis, L.F., Hellberg, C.S., Vaithyanathan, V., Li, H., Parker, M.K., Andersen, K.E., Schlom, D.G., Muller, D.A., Phys. Rev. Lett. 100, 036101 (2008).CrossRefGoogle Scholar
Li, H., Hu, X., Wei, Y., Yu, Z., Zhang, X., Droopad, R., Demkov, A.A., Edwards, J., Moore, K., Ooms, W., Kulik, J., Fejes, P., J. Appl. Phys. 93, 4521 (2003).CrossRefGoogle Scholar
Kawasaki, M., Takahashi, K., Maeda, T., Tsuchiya, R., Shinohara, M., Ishiyama, O., Yonezawa, T., Yoshimoto, M., Koinuma, H., Science 266, 1540 (1994).CrossRefGoogle Scholar
Koster, G., Kropman, B.L., Rijnders, G.J.H.M., Blank, D.H.A., Rogalla, H., Appl. Phys. Lett. 73, 2920 (1998).CrossRefGoogle Scholar
Schrott, A.G., Misewich, J.A., Copel, M., Abraham, D.W., Zhang, Y., Appl. Phys. Lett. 79, 1786 (2001).Google Scholar
Biswas, A., Rossen, P.B., Yang, C.H., Siemons, W., Jung, M.H., Yang, I.K., Ramesh, R., Jeong, Y.H., Appl. Phys. Lett. 98, 051904 (2011).Google Scholar
Chang, J., Park, Y.-S., Kim, S.-K., Appl. Phys. Lett. 92, 152910 (2008).Google Scholar
Blok, J.L., Wan, X., Koster, G., Blank, D.H.A., Rijnders, G., Appl. Phys. Lett. 99, 151917 (2011).Google Scholar
Ohnishi, T., Takahashi, K., Nakamura, M., Kawasaki, M., Yoshimoto, M., Koinuma, H., Appl. Phys. Lett. 74, 2531 (1999).Google Scholar
Ngai, J.H., Schwendemann, T.C., Walker, A.E., Segal, Y., Walker, F.J., Altman, E.I., Ahn, C.H., Adv. Mater. 22, 2945 (2010).CrossRefGoogle Scholar
Kleibeuker, J.E., Koster, G., Siemons, W., Dubbink, D., Kuiper, B., Blok, J.L., Yang, C.-H., Ravichandran, J., Ramesh, R., ten Elshof, J.E., Blank, D.H.A., Rijnders, G., Adv. Funct. Mater. 20, 3490 (2010).Google Scholar
Kleibeuker, J.E., Kuiper, B., Harkema, S., Blank, D.H.A., Koster, G., Rijnders, G., Tinnemans, P., Vlieg, E., Rossen, P.B., Siemons, W., Portale, G., Ravichandran, J., Szepieniec, J.M., Ramesh, R., Phys. Rev. B 85, 165413 (2012).CrossRefGoogle Scholar
Bae, H.-J., Sigman, J., Norton, D.P., Boatner, L.A., Appl. Surf. Sci. 241, 271 (2005).CrossRefGoogle Scholar
Pertsev, N.A., Zembilgotov, A.G., Tagantsev, A.K., Phys. Rev. Lett. 80, 1988 (1998).CrossRefGoogle Scholar
Diéguez, O., Tinte, S., Antons, A., Bungaro, C., Neaton, J.B., Rabe, K.M., Vanderbilt, D., Phys. Rev B 69, 212101 (2004).CrossRefGoogle Scholar
Li, Y.L., Chen, L.Q., Appl. Phys. Lett. 88, 072905 (2006).Google Scholar
Tenne, D.A., Turner, P., Schmidt, J.D., Biegalski, M., Li, Y.L., Chen, L.Q., Soukiassian, A., Trolier-McKinstry, S., Schlom, D.G., Xi, X.X., Fong, D.D., Fuoss, P.H., Eastman, J.A., Stephenson, G.B., Thompson, C., Streiffer, S.K., Phys. Rev. Lett. 103, 177601 (2009).Google Scholar
Pertsev, A., Koukhar, V.G., Phys. Rev. Lett. 84, 3722 (2000).CrossRefGoogle Scholar
Koukhar, V.G., Pertsev, N.A., Waser, R., Phys. Rev. B 64, 214103 (2001).Google Scholar
Li, Y.L., Hu, S.Y., Liu, Z.K., Chen, L.Q., Appl. Phys. Lett. 78, 3878 (2001).Google Scholar
Li, Y.L., Hu, S.Y., Liu, Z.K., Chen, L.Q., Acta Mater. 50, 395 (2002).CrossRefGoogle Scholar
Streiffer, S.K., Eastman, J.A., Fong, D.D., Thompson, C., Munkholm, A., Murty, M.V.R., Auciello, O., Bai, G.R., Stephenson, G.B., Phys. Rev. Lett. 89, 067601 (2002).CrossRefGoogle Scholar
Fong, D.D., Stephenson, G.B., Streiffer, S.K., Eastman, J.A., Auciello, O., Fuoss, P.H., Thompson, C., Science 304, 1650 (2004).CrossRefGoogle Scholar
Abe, K., Yanase, N., Sano, K., Izuha, M., Fukushima, N., Kawakubo, T., Integr. Ferroelectr. 21, 197 (1998).Google Scholar
Yanase, N., Abe, K., Fukushima, N., Kawakubo, T., Jpn. J. Appl. Phys., Part 1 38, 5305 (1999).Google Scholar
Specht, E.D., Christen, H.-M., Norton, D.P., Boatner, L.A., Phys. Rev. Lett. 80, 4317 (1998).Google Scholar
Christen, H.-M., Knauss, L.A., Harshavardhan, K.S., Mater. Sci. Eng., B 56, 200 (1998).Google Scholar
Christen, H.M., Specht, E.D., Silliman, S.S., Harshavardhan, K.S., Phys. Rev. B 68, 20101 (2003).Google Scholar
Dawber, M., Lichtensteiger, C., Cantoni, M., Veithen, M., Ghosez, P., Johnston, K., Rabe, K.M., Triscone, J.-M., Phys. Rev. Lett. 95, 177601 (2005).CrossRefGoogle Scholar
Bousquet, E., Dawber, M., Stucki, N., Lichtensteiger, C., Hermet, P., Gariglio, S., Triscone, J.M., Ghosez, P., Nature 452, 732 (2008).CrossRefGoogle Scholar
Neaton, J.B., Rabe, K.M., Appl. Phys. Lett. 82, 1586 (2003).Google Scholar
Tenne, D.A., Bruchhausen, A., Lanzillotti-Kimura, N.D., Fainstein, A., Katiyar, R.S., Cantarero, A., Soukiassian, A., Vaithyanathan, V., Haeni, J.H., Tian, W., Schlom, D.G., Choi, K.J., Kim, D.M., Eom, C.B., Sun, H.P., Pan, X.Q., Li, Y.L., Chen, L.Q., Jia, Q.X., Nakhmanson, S.M., Rabe, K.M., Xi, X.X., Science 313, 1614 (2006).Google Scholar
Li, Y.L., Hu, S.Y., Tenne, D., Soukiassian, A., Schlom, D.G., Xi, X.X., Choi, K.J., Eom, C.B., Saxena, A., Lookman, T., Jia, Q.X., Chen, L.Q., Appl. Phys. Lett. 91, 112914 (2007).CrossRefGoogle Scholar
Li, Y.L., Hu, S.Y., Tenne, D., Soukiassian, A., Schlom, D.G., Chen, L.Q., Xi, X.X., Choi, K.J., Eom, C.B., Saxena, A., Lookman, T., Jia, Q.X., Appl. Phys. Lett. 91, 252904 (2007).CrossRefGoogle Scholar
Sai, N., Meyer, B., Vanderbilt, D., Phys. Rev. Lett. 84, 5636 (2000).Google Scholar
Warusawithana, M.R., Colla, E.V., Eckstein, J.N., Weissman, M.B., Phys. Rev. Lett. 90, 036802 (2003).Google Scholar
Lee, H.N., Christen, H.M., Chisholm, M.F., Rouleau, C.M., Lowndes, D.H., Nature 433, 395 (2005).CrossRefGoogle Scholar
Zembilgotov, A.G., Pertsev, N.A., Böttger, U., Waser, R., Appl. Phys. Lett. 86, 052903 (2005).Google Scholar
Sheng, G., Li, Y.L., Zhang, J.X., Choudhury, S., Jia, Q.X., Gopalan, V., Schlom, D.G., Liu, Z.K., Chen, L.Q., J. Appl. Phys. 108, 084113 (2010).Google Scholar
Kathan-Galipeau, K., Wu, P.P., Li, Y.L., Chen, L.Q., Soukiassian, A., Xi, X.X., Schlom, D.G., Bonnell, D.A., ACS Nano 5, 640 (2011).Google Scholar
Kathan-Galipeau, K., Wu, P.P., Li, Y.L., Chen, L.Q., Soukiassian, A., Zhu, Y., Muller, D.A., Xi, X.X., Schlom, D.G., Bonnell, D.A., J. Appl. Phys. 112, 052011 (2012).Google Scholar
Ravichandran, J., Yadav, A.K., Cheaito, R., Rossen, P.B., Soukiassian, A., Suresha, S.J., Duda, J.C., Foley, B.M., Lee, C.H., Zhu, Y., Lichtenberger, A.W., Moore, J.E., Muller, D.A., Schlom, D.G., Hopkins, P.E., Majumdar, A., Ramesh, R., Zurbuchen, M.A., Nat. Mater. (2013), in press, doi: 10.1038/nmat3826.Google Scholar
Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M., Ramesh, R., Science 299, 1719 (2003).Google Scholar
Ramesh, R., Spaldin, N.A., Nat. Mater. 6, 21 (2007).CrossRefGoogle Scholar
Belik, A.A., Iikubo, S., Kodama, K., Igawa, N., Shamoto, S.-I., Niitaka, S., Azuma, M., Shimakawa, Y., Takano, M., Izumi, F., Takayama-Muromachi, E., Chem. Mater. 18, 798 (2006).Google Scholar
Li, M.-R., Adem, U., McMitchell, S.R.C., Xu, Z., Thomas, C.I., Warren, J.E., Giap, D.V., Niu, H., Wan, X., Palgrave, R.G., Schiffmann, F., Cora, F., Slater, B., Burnett, T.L., Cain, M.G., Abakumov, A.M., van Tendeloo, G., Thomas, M.F., Rosseinsky, M.J., Claridge, J.B., J. Am. Chem. Soc. 134, 3737 (2012).CrossRefGoogle Scholar
Wang, W., Zhao, J., Wang, W., Gai, Z., Balke, N., Chi, M., Lee, H.N., Tian, W., Zhu, L., Cheng, X., Keavney, D.J., Yi, J., Ward, T.Z., Snijders, P.C., Christen, H.M., Wu, W., Shen, J., Xu, X., Phys. Rev. Lett. 110, 237601 (2013).Google Scholar
Li, J.F., Wang, J., Wuttig, M., Ramesh, R., Wang, N., Ruette, B., Pyatakov, A.P., Zvezdin, A.K., Viehland, D., Appl. Phys. Lett. 84, 5261 (2004).Google Scholar
Das, R.R., Kim, D.M., Baek, S.H., Eom, C.B., Zavaliche, F., Yang, S.Y., Ramesh, R., Chen, Y.B., Pan, X.Q., Ke, X., Rzchowski, M.S., Streiffer, S.K., Appl. Phys. Lett. 88, 242904 (2006).Google Scholar
Dho, J., Qi, X., Kim, H., MacManus-Driscoll, J.L., Blamire, M.G., Adv. Mater. 18, 1445 (2006).CrossRefGoogle Scholar
Kubel, F., Schmid, H., Acta Crystallogr., Sect. B: Struct. Sci. 46, 698 (1990).CrossRefGoogle Scholar
Hatt, A.J., Spaldin, N.A., Ederer, C., Phys. Rev. B 81, 054109 (2010).Google Scholar
Christy, A.G., Acta Crystallogr. Sect. B: Struct. Sci. 51, 753 (1995).Google Scholar
Ehm, L., Knorr, K., Peters, L., Rath, S., Depmeier, W., J. Alloys Compd. 429, 82 (2007).Google Scholar
Haines, J., Léger, J.M., Schulte, O., Phys. Rev. B 57, 7551 (1998).CrossRefGoogle Scholar
Zhang, J.X., Xiang, B., He, Q., Seidel, J., Zeches, R.J., Yu, P., Yang, S.Y., Wang, C.H., Chu, Y.H., Martin, L.W., Minor, A.M., Ramesh, R., Nat. Nanotechnol. 6, 98 (2011).Google Scholar
He, Q., Chu, Y.H., Heron, J.T., Yang, S.Y., Liang, W.I., Kuo, C.Y., Lin, H.J., Yu, P., Liang, C.W., Zeches, R.J., Kuo, W.C., Juang, J.Y., Chen, C.T., Arenholz, E., Scholl, A., Ramesh, R., Nat. Commun. 2, 225 (2011).CrossRefGoogle Scholar
Yang, J.C., He, Q., Suresha, S.J., Kuo, C.Y., Peng, C.Y., Haislmaier, R.C., Motyka, M.A., Sheng, G., Adamo, C., Lin, H.J., Hu, Z., Chang, L., Tjeng, L.H., Arenholz, E., Podraza, N.J., Bernhagen, M., Uecker, R., Schlom, D.G., Gopalan, V., Chen, L.Q., Chen, C.T., Ramesh, R., Chu, Y.H., Phys. Rev. Lett. 109, 247606 (2012).Google Scholar
Fennie, C.J., Rabe, K.M., Phys. Rev. Lett. 97, 267602 (2006).Google Scholar
Rivera, J.P., Schmid, H., Ferroelectrics 36, 447 (1981).Google Scholar
von Wartburg, W., Phys. Status Solidi A 21, 557 (1974).Google Scholar
Birol, T., Fennie, C.J., Phys. Rev. B 88, 094103 (2013).Google Scholar
McGuire, T.R., Shafer, M.W., Joenk, R.J., Alperin, H.A., Pickart, S.J., J. Appl. Phys. 37, 981 (1966).Google Scholar
Chien, C.-L., DeBenedetti, S., De, F.Barros, S., Phys. Rev. B 10 3913 (1974).Google Scholar
Katsufuji, T., Takagi, H., Phys. Rev. B 64, 054415 (2001).Google Scholar
Wang, H.-H., Fleet, A., Brock, J.D., Dale, D., Suzuki, Y., J. Appl. Phys. 96, 5324 (2004).Google Scholar
Kugimiya, K., Fujita, K., Tanaka, K., Hirao, K., J. Magn. Magn. Mater. 310, 2268 (2007).CrossRefGoogle Scholar
Chae, S.C., Chang, Y.J., Kim, D.-W., Lee, B.W., Choi, I., Jung, C.U., J. Electroceram. 22, 216 (2009).Google Scholar
Fujita, K., Wakasugi, N., Murai, S., Zong, Y., Tanaka, K., Appl. Phys. Lett. 94, 062512 (2009).CrossRefGoogle Scholar
Schafer, M.W., J. Appl. Phys. 36, 1145 (1965).CrossRefGoogle Scholar
McCarthy, G.J., White, W.B., Roy, R., J. Inorg. Nucl. Chem. 31, 329 (1969).Google Scholar
Kim, Y.S., Kim, D.J., Kim, T.H., Noh, T.W., Choi, J.S., Park, B.H., Yoon, J.-G., Appl. Phys. Lett. 91, 042908 (2007).CrossRefGoogle Scholar
Müller, K.A., Burkard, H., Phys. Rev. B 19, 3593 (1979).Google Scholar
Tarsa, E.J., Hachfeld, E.A., Quinlan, F.T., Speck, J.S., Eddy, M., Appl. Phys. Lett. 68, 490 (1996).Google Scholar
Ohnishi, T., Lippmaa, M., Yamamoto, T., Meguro, S., Koinuma, H., Appl. Phys. Lett. 87, 2419191 (2005).Google Scholar
Ohnishi, T., Shibuya, K., Yamamoto, T., Lippmaa, M., J. Appl. Phys. 103, 103703 (2008).Google Scholar
Kestigian, M., Dickinson, J.G., Ward, R., J. Am. Chem. Soc. 79, 5598 (1957).CrossRefGoogle Scholar
Tenne, D.A., Gonenli, I.E., Soukiassian, A., Schlom, D.G., Nakhmanson, S.M., Rabe, K.M., Xi, X.X., Phys. Rev. B 76, 024303 (2007).Google Scholar
Brooks, C.M., Fitting Kourkoutis, L., Heeg, T., Schubert, J., Muller, D.A., Schlom, D.G., Appl. Phys. Lett. 94, 162905 (2009).Google Scholar
Lee, J.H., Ke, X., Podraza, N.J., Fitting Kourkoutis, L., Heeg, T., Roeckerath, M., Freeland, J.W., Fennie, C.J., Schubert, J., Muller, D.A., Schiffer, P., Schlom, D.G., Appl. Phys. Lett. 94, 212509 (2009).Google Scholar
Lee, J.H., Rabe, K.M., Phys. Rev. Lett. 104, 207204 (2010).Google Scholar
Bousquet, E., Spaldin, N.A., Ghosez, P., Phys. Rev. Lett. 104, 037601 (2010).CrossRefGoogle Scholar
Ryan, P.J., Kim, J.-W., Birol, T., Thompson, P., Lee, J.-H., Ke, X., Normile, P.S., Karapetrova, E., Schiffer, P., Brown, S.D., Fennie, C.J., Schlom, D.G., Nat. Commun. 4, 1334 (2013).Google Scholar
Lee, C.H., Orloff, N.D., Birol, T., Zhu, Y., Goian, V., Rocas, E., Haislmaier, R., Vlahos, E., Mundy, J.A., Kourkoutis, L.F., Nie, Y., Biegalski, M.D., Zhang, J., Bernhagen, M., Benedek, N.A., Kim, Y., Brock, J.D., Uecker, R., Xi, X.X., Gopalan, V., Nuzhnyy, D., Kamba, S., Muller, D.A., Takeuchi, I., Booth, J.C., Fennie, C.J., Schlom, D.G., Nature 502, 532 (2013).Google Scholar
Vendik, O.G., Ferroelectrics 12, 85 (1976).CrossRefGoogle Scholar
Kirchoefer, S.W., Pond, J.M., Carter, A.C., Chang, W., Agarwal, K.K., Horwitz, J.S., Chrisey, D.B., Microwave Opt. Technol. Lett. 18, 168 (1998).Google Scholar
Gevorgian, S.S., Kollberg, E.L., IEEE Trans. Microwave Theory Tech. 49, 2117 (2001).Google Scholar
Tagantsev, A.K., Sherman, V.O., Astafiev, K.F., Venkatesh, J., Setter, N., J. Electroceram. 11, 5 (2003).CrossRefGoogle Scholar
Andersson, S., Wadsley, A.D., Nature 211, 581 (1966).CrossRefGoogle Scholar
Anderson, J.S, Browne, J.M., Cheetham, A.K., Vondreel, R., Hutchison, J.L., Lincoln, F.J., Bevan, D.J.M., Straehle, J., Nature 243, 81 (1973).Google Scholar
Tilley, R.J.D., Nature 269, 229 (1977).Google Scholar
Tilley, R.J.D., J. Solid State Chem. 21, 293 (1977).CrossRefGoogle Scholar
Nakamura, T., Sun, P.H., Shan, Y.J., Inaguma, Y., Itoh, M., Kim, I.S., Sohn, J.H., Ikeda, M., Kitamura, T., Konagaya, H., Ferroelectrics 196, 205 (1997).CrossRefGoogle Scholar
Wise, P.L., Reaney, I.M., Lee, W.E., Price, T.J., Iddles, D.M., Cannell, D.S., J. Eur. Ceram. Soc. 21, 1723 (2001).Google Scholar
Orloff, N.D., Tian, W., Fennie, C.J., Lee, C.H., Gu, D., Mateu, J., Xi, X.X., Rabe, K.M., Schlom, D.G., Takeuchi, I., Booth, J.C., Appl. Phys. Lett. 94, 042908 (2009).Google Scholar
Birol, T., Benedek, N.A., Fennie, C.J., Phys. Rev. Lett. 107, 257602 (2011).Google Scholar
Klenov, D.O., Donner, W., Foran, B., Stemmer, S., Appl. Phys. Lett. 82, 3427 (2003).Google Scholar
Donner, W., Chen, C., Liu, M., Jacobson, A.J., Lee, Y.-L., Gadre, M., Morgan, D., Chem. Mater. 23, 984 (2011).Google Scholar
Rondinelli, J.M., Spaldin, N.A., Adv. Mater. 23, 3363 (2011).Google Scholar
Rondinelli, J.M., May, S.J., Freeland, J.W., MRS Bull. 37, 261 (2012).Google Scholar
Choi, W.S., Kwon, J.-H., Jeen, H., Hamann-Borrero, J.E., Radi, A., Macke, S., Sutarto, R., He, F., Sawatzky, G.A., Hinkov, V., Kim, M., Lee, H.N., Nano Lett. 12, 4966 (2012).Google Scholar
Yang, Y., Schlepütz, C.M., Adamo, C., Schlom, D.G., Clarke, R., APL Mater. 1, 052102 (2013).Google Scholar
Jia, C.-L., Nagarajan, V., He, J.-Q., Houben, L., Zhao, T., Ramesh, R., Urban, K., Waser, R., Nat. Mater. 6, 64 (2006).Google Scholar
Jia, C.-L., Mi, S.-B., Urban, K., Vrejoiu, I., Alexe, M., Hesse, D., Nat. Mater. 7, 57 (2008).Google Scholar
Nelson, C.T., Winchester, B., Zhang, Y., Kim, S.-J., Melville, A., Adamo, C., Folkman, C.M., Baek, S.-H., Eom, C.-B., Schlom, D.G., Chen, L.-Q., Pan, X., Nano Lett. 11, 828 (2011).Google Scholar
Jia, C.L., Urban, K.W., Alexe, M., Hesse, D., Vrejoiu, I., Science 331, 1420 (2011).Google Scholar
Borisevich, A.Y., Chang, H.J., Huijben, M., Oxley, M.P., Okamoto, S., Niranjan, M.K., Burton, J.D., Tsymbal, E.Y., Chu, Y.H., Yu, P., Ramesh, R., Kalinin, S.V., Pennycook, S.J., Phys. Rev. Lett. 105, 087204 (2010).Google Scholar
Muller, D.A., Kourkoutis, L.F., Murfitt, M., Song, J.H., Hwang, H.Y., Silcox, J., Dellby, N., Krivanek, O.L., Science 319, 1073 (2008).CrossRefGoogle Scholar
Lee, D., Behera, R., Wu, P., Xu, H., Li, Y.L., Sinnott, S.B., Phillpot, S., Chen, L., Gopalan, V., Phys. Rev. B 80, 060102 (2009).CrossRefGoogle Scholar
Kneller, E.F., Hawig, R., Magnetics, IEEE Trans. Magn. 27, 3588 (1991).Google Scholar
Fullerton, E.E., Jiang, J.S., Bader, S.D., J. Magn. Magn. Mater. 200, 392 (1999).Google Scholar
Wu, P., Ma, X., Li, Y., Gopalan, V., Chen, L.Q., Appl. Phys. Lett. 100, 092905 (2012).Google Scholar
Lee, J.H., Rabe, K.M., Phys. Rev. Lett. 107, 067601 (2011).CrossRefGoogle Scholar
Newns, D.M., Elmegreen, B.G., Liu, X.-H., Martyna, G.J., Adv. Mater. 24, 3672 (2012).Google Scholar
Newns, D., Elmegreen, B., Hu Liu, X., Martyna, G., J. Appl. Phys. 111, 084509 (2012).Google Scholar
Newnham, R.E., Kramer, J.J., Schulze, W.A., Cross, L.E., J. Appl. Phys. 49, 6088 (1978).CrossRefGoogle Scholar
Harris, M.J., Bramwell, S.T., McMorrow, D.F., Zeiske, T., Godfrey, K.W., Phys. Rev. Lett. 79, 2554 (1997).Google Scholar
Fennie, C., Rabe, K., Phys. Rev. B 72, 100103 (2005).CrossRefGoogle Scholar
Choi, T., Horibe, Y., Yi, H.T., Choi, Y.J., Wu, W., Cheong, S.W., Nat. Mater. 9, 253 (2010).CrossRefGoogle Scholar
Arkenbout, A., Palstra, T., Siegrist, T., Kimura, T., Phys. Rev. B 74, 184431 (2006).Google Scholar
Ye, F., Ren, Y., Huang, Q., Fernandez-Baca, J., Dai, P., Lynn, J., Kimura, T., Phys. Rev. B 73, 220404 (2006).Google Scholar
Kimura, T., Sekio, Y., Nakamura, H., Siegrist, T., Ramirez, A.P., Nat. Mater. 7, 291 (2008).Google Scholar
Kitagawa, Y., Hiraoka, Y., Honda, T., Ishikura, T., Nakamura, H., Kimura, T., Nat. Mater. 9, 797 (2010).Google Scholar
Bossak, A.A., Graboy, I.E., Gorbenko, O.Y., Kaul, A.R., Kartavtseva, M.S., Svetchnikov, V.L., Zandbergen, H.W., Chem. Mater. 16, 1751 (2004).CrossRefGoogle Scholar
Wang, W., Zhao, J., Wang, W., Gai, Z., Balke, N., Chi, M., Lee, H.N., Tian, W., Zhu, L., Cheng, X., Keavney, D.J., Yi, J., Ward, T.Z., Snijders, P.C., Christen, H.M., Wu, W., Shen, J., Xu, X., Phys. Rev. Lett. 110, 237601 (2013).CrossRefGoogle Scholar
Machlin, E.S., Chaudhari, P., in Synthesis and Properties of Metastable Phases, Machlin, E.S., Rowland, T.J., Eds. (The Metallurgical Society of AIME, Warrendale, 1980), pp. 1129.Google Scholar
Flynn, C.P., Phys. Rev. Lett. 57, 599 (1986).Google Scholar
Bruinsma, R., Zangwill, A., J. Phys. (Paris) 47, 2055 (1986).Google Scholar
Gorbenko, O.Y., Samoilenkov, S.V., Graboy, I.E., Kaul, A.R., Chem. Mater. 14, 4026 (2002).Google Scholar
Rondinelli, J.M., Fennie, C.J., Adv. Mater. 24, 1961 (2012).Google Scholar
Mulder, A.T., Benedek, N.A., Rondinelli, J.M., Fennie, C.J., Adv. Funct. Mater. 23, 4810 (2013).Google Scholar
Fennie, C.J., Phys. Rev. Lett. 100, 167203 (2008).Google Scholar
Varga, T., Kumar, A., Vlahos, E., Denev, S., Park, M., Hong, S., Sanehira, T., Wang, Y., Fennie, C., Streiffer, S., Ke, X., Schiffer, P., Gopalan, V., Mitchell, J., Phys. Rev. Lett. 103, 047601 (2009).Google Scholar
Singh-Bhalla, G., Bell, C., Ravichandran, J., Siemons, W., Hikita, Y., Salahuddin, S., Hebard, A.F., Hwang, H.Y., Ramesh, R., Nat. Phys. 7, 80 (2010).Google Scholar