Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T02:20:40.496Z Has data issue: false hasContentIssue false

First-principles design of next-generation nuclear fuels

Published online by Cambridge University Press:  22 March 2011

Younsuk Yun
Affiliation:
Laboratory of Reactor Physics and Systems Behaviour, Paul Scherrer Institut, Switzerland; younsuk.yun@psi.ch
Peter M. Oppeneer
Affiliation:
Department of Physics and Astronomy, Uppsala University, Sweden; peter.oppeneer@fysik.uu.se
Get access

Abstract

The behavior of nuclear fuel in a reactor is a complex phenomenon that is influenced by a large number of materials properties, which include thermomechanical strength, chemical stability, microstructure, and defects. As a consequence, a comprehensive understanding of the fuel material behavior presents a significant modeling challenge, which must be mastered to improve the efficiency and reliability of current nuclear reactors. It is also essential to the development of advanced fuel materials for next-generation reactors. Over the last two decades, the use of density functional theory (DFT) has greatly contributed to our understanding by providing profound information on nuclear fuel materials, ranging from fundamental properties of f-electron systems to thermomechanical materials properties. This article briefly summarizes the main achievements of this first-principles computational methodology as it applies to nuclear fuel materials. Also, the current status of first-principles modeling is discussed, considering existing limitations and drawbacks such as size limitation and the added complexity associated with high temperature analysis. Finally, the future role of DFT modeling in the nuclear fuels industry is put into perspective.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Humphreys, C.J., Sutton, A.P., Phys. Rev. B 57, 1505 (1998).CrossRefGoogle Scholar
2.Kudin, K.N., Scuseria, G.E., Martin, R.L., Phys. Rev. Lett. 89, 266402 (2002).CrossRefGoogle Scholar
3.Laskowski, R., Madsen, G.K.H., Blaha, P., Schwarz, K., Phys. Rev. B 69, 140408(R) (2004).CrossRefGoogle Scholar
4.Yun, Y., Kim, H., Kim, H., Park, K., Nucl. Eng. Technol. 37, 293 (2005).Google Scholar
5.Prodan, I.D., Scuseria, G.E., Martin, R.L., Phys. Rev. B 76, 033101 (2007).CrossRefGoogle Scholar
6.Yun, Y., Kim, H., Lim, H., Park, K., J. Korean Phys. Soc. 50, 1285 (2007).CrossRefGoogle Scholar
7.Amadon, B., Jollet, F., Torrent, M., Phys. Rev. B 77, 155104 (2008).CrossRefGoogle Scholar
8.Dorado, B., Amadon, B., Freyss, M., Bertolus, M., Phys. Rev. B. 79, 235125 (2009).CrossRefGoogle Scholar
9.Anderson, D.A., Lezama, J., Uberuaga, B.P., Deo, C., Conradson, S.D., Phys. Rev. B 79, 024110 (2009).CrossRefGoogle Scholar
10.Freyss, M., Petit, T., Crocombette, J.P., J. Nucl. Mater. 347, 44 (2005).CrossRefGoogle Scholar
11.Freyss, M., Vergnet, N., Petit, T., J. Nucl. Mater. 352, 144 (2006).CrossRefGoogle Scholar
12.Yun, Y., Kim, H., Kim, H., Park, K., J. Nucl. Mater. 378, 40 (2008).CrossRefGoogle Scholar
13.Yun, Y., Eriksson, O., Oppeneer, P.M., J. Nucl. Mater. 385, 510 (2009).CrossRefGoogle Scholar
14.Yun, Y., Eriksson, O., Oppeneer, P.M., J. Nucl. Mater. 385, 364 (2009).CrossRefGoogle Scholar
15.Yun, Y., Oppeneer, P.M., Kim, H., Park, K., Act. Mater. 57, 1655 (2009).CrossRefGoogle Scholar
16.Iwasawa, M., Chen, Y., Kaneta, Y., Ohnuma, T., Geng, H.-Y., Kinoshita, M., Mater. Trans. 47, 2651 (2006).CrossRefGoogle Scholar
17.Gupta, F., Brillant, G., Pasturel, A., Philos. Mag. 87, 2561 (2007).CrossRefGoogle Scholar
18.Nerikar, P., Watanabe, T., Tulenko, J.S., Phillpot, S.R., Sinnott, S.B., J. Nucl. Mater. 384, 61 (2009).CrossRefGoogle Scholar
19.Dorado, B., Freyss, M., Martin, G., Eur. Phys. J. B 69, 203 (2009).CrossRefGoogle Scholar
20.Vigier, N., Den Auwer, C., Fillaux, C., Maslennikov, A., Noël, H., Roques, J., Shuh, D.K., Simoni, E., Tyliszczak, T., Moisy, P., Chem. Mater. 20, 3199 (2008).CrossRefGoogle Scholar
21.Freyss, M., Phys. Rev. B 81, 014101 (2010).CrossRefGoogle Scholar
22.Yin, Q., Savrasov, S.Y., Phys. Rev. Lett. 100, 225504 (2008).CrossRefGoogle Scholar
23.Huda, M.N., Ray, A.K., Phys. Rev. B 72, 085101 (2005).CrossRefGoogle Scholar
24.Skomurski, F.N., Ewing, R.C., Rohl, A.L., Gale, J.D., Becker, U., Am. Mineral. 91, 1761 (2006).CrossRefGoogle Scholar
25.Dudarev, S.L., Nguyen Manh, D., Sutton, A.P., Philos. Mag. B 75, 613 (1997).CrossRefGoogle Scholar
26.Baer, Y., Schoenes, J., Solid State Commun. 33, 885 (1980).CrossRefGoogle Scholar
27.Kudin, K.N., Scuseria, G.E., Martin, R.L., Phys. Rev. Lett. 89, 266402 (2002).CrossRefGoogle Scholar
28.Atta-Fynn, R., Ray, A.K., Europhys. Lett. 85, 27008 (2009).CrossRefGoogle Scholar
29.Petit, L., Svane, A., Szotek, Z., Temmerman, W.M., Science 301, 498 (2003).CrossRefGoogle Scholar
30.Petit, L., Svane, A., Szotek, Z., Temmerman, W.M., Stocks, G.M., Phys. Rev. B 81, 045108 (2010).CrossRefGoogle Scholar
31.Petrucci, R.H., Harwood, W.S., Herring, G., General Chemistry: Principles and Modern Applications (Prentice Hall, New Jersey, 2001).Google Scholar
32.Zhou, F., Ozoliņš, V., “Crystal field and magnetic structure of UO2; http://lanl.arxiv.org/abs/1006.3988Google Scholar
33.Matzke, Hj., Diffusion Processes in Nuclear Materials (North Holland, Amsterdam, 1992).Google Scholar
34.Kim, H., Park, K., Yun, Y., Kim, B.G., Ryu, H.J., Song, K.C., Choo, Y.S., Hong, K.P., Ann. Nucl. Energy 34, 153 (2007).CrossRefGoogle Scholar
35.Matzke, Hj., J. Chem. Soc. Faraday. Trans. 2 83, 1121 (1987).CrossRefGoogle Scholar
36.Dai, X., Savrasov, S.Y., Kotliar, G., Migliori, A., Ledbetter, H., Abrahams, E., Science 300, 953 (2003).CrossRefGoogle Scholar
37.Parlinski, K., PHONON software, Cracow, Poland, 2005.Google Scholar
38.Piekarz, P., Parlinski, K., Jochym, P.T., Oles, A.M., Sanchez, J.-P., Rebizant, J., Phys. Rev. B 72, 014521 (2005).CrossRefGoogle Scholar
39.Yamada, K., Kurosaki, K., Uno, M., Yamanaka, S., J. Alloys Compd. 307, 10 (2000).CrossRefGoogle Scholar
40.Chen, P.H., Wang, X.L., Lai, X.C., Li, G., Ao, B.Y., Long, Y., J. Nucl. Mater. 404, 6 (2010).CrossRefGoogle Scholar
41.Mermin, N.D., Phy. Rev. 137, A1441 (1965).CrossRefGoogle Scholar
42.Mattsson, T.R., Sandberg, N., Armiento, R., Mattsson, A.E., Phys. Rev. B 80, 224104 (2009).CrossRefGoogle Scholar
43.Root, S., Magyar, R.J., Carpenter, J.H., Hanson, D.L., Mattsson, T.R., Phys. Rev. Lett. 105, 085501 (2010).CrossRefGoogle Scholar
44.Govers, K., Lemehov, S., Hou, M., Verwerft, M., J. Nucl. Mater. 395, 131 (2009).CrossRefGoogle Scholar
47.Trinkle, D.R., Woodward, C., Science 310, 1665 (2005).CrossRefGoogle Scholar
48.Grimes, R.W., Konings, R.J.M., Edwards, L., Nat. Mater. 7, 683 (2008).CrossRefGoogle Scholar
49.Muta, H., Kurosaki, K., Uno, M., Yamanaka, S., J. Mater. Sci. 43, 6429 (2008).CrossRefGoogle Scholar
50.Kotomin, E.A., Grimes, R.W., Mastrikov, Y., Ashley, N.J., J. Phys. Condens. Matter 19, 106208 (2007).CrossRefGoogle Scholar
51.Lu, Y., Wang, B.-T., Li, R.-W., Shi, H., Zhang, P., J. Nucl. Mater. (2011), in press.Google Scholar