Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-11T04:55:58.907Z Has data issue: false hasContentIssue false

Functional nanostructured materials based on self-assembly of block copolymers

Published online by Cambridge University Press:  11 February 2016

W. Bai
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, USA; wbai@mit.edu
C.A. Ross
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, USA; caross@mit.edu
Get access

Abstract

Block copolymers (BCPs) microphase-separate to form periodic patterns with periods of a few nanometers and above without the need for lithographic guidance. These self-assembled nanostructures have a variety of bulk geometries, including alternating lamellae, gyroids, arrays of cylinders or spheres, tiling patterns and core–shell structures, depending on the molecular architecture of the polymer and the volume fraction of its blocks. Non-bulk morphologies can be produced, the ordering of the microdomains can be improved, and their locations can be directed using various templates and processing strategies. The blocks themselves can constitute a functional material, such as a photonic crystal, or they can be used as a mask to pattern other functional materials, functionalized directly by various chemical approaches, or used as a scaffold to assemble nanoparticles or other nanostructures. BCPs offer tremendous flexibility in creating nanostructured materials with a range of applications in microelectronics, photovoltaics, filtration membranes, and other devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bates, F.S., Fredrickson, G.H., Annu. Rev. Phys. Chem. 41, 525 (1990).CrossRefGoogle Scholar
Segalman, R.A., Mater. Sci. Eng. R 48, 191 (2005).CrossRefGoogle Scholar
Cheng, J.Y., Ross, C.A., Smith, H.I., Thomas, E.L., Adv. Mater. 18, 2505 (2006).CrossRefGoogle Scholar
Ross, C.A., Berggren, K.K., Cheng, J.Y., Jung, Y.S., Chang, J.-B., Adv. Mater. 26, 4386 (2014).CrossRefGoogle Scholar
Nunns, A., Gwyther, J., Manners, I., Polymer (Guildf) 54, 1269 (2013).CrossRefGoogle Scholar
Hillmyer, M., Curr. Opin. Solid State Mater. Sci. 4, 559 (1999).CrossRefGoogle Scholar
Sinturel, C., Vayer, M., Morris, M., Hillmyer, M.A., Macromolecules 46, 5399 (2013).CrossRefGoogle Scholar
Bates, F.S., Hillmyer, M.A., Lodge, T.P., Bates, C.M., Delaney, K.T., Fredrickson, G.H., Science 336, 434 (2012).CrossRefGoogle Scholar
Schacher, F.H., Rupar, P.A., Manners, I., Angew. Chem. Int. Ed. Engl. 51, 7898 (2012).CrossRefGoogle Scholar
Yoo, H.G., Byun, M., Jeong, C.K., Lee, K.J., Adv. Mater. 27, 3982 (2015).CrossRefGoogle Scholar
Choi, H.K., Gwyther, J., Manners, I., Ross, C.A., ACS Nano 6, 8342 (2012).CrossRefGoogle Scholar
Kulbaba, K., Manners, I., Macromol. Rapid Commun. 22, 711 (2001).3.0.CO;2-C>CrossRefGoogle Scholar
Zhou, Y., Ahn, S., Deshmukh, P., Kasi, R.M., Liquid Crystalline Block Copolymers; Encyclopedia of Polymer Science and Technology (Wiley, Hoboken, NJ, 2013).Google Scholar
Olsen, B., Segalman, R., Mater. Sci. Eng. R 62, 37 (2008).CrossRefGoogle Scholar
Ross, C.A., Jung, Y.S., Chuang, V.P., Ilievski, F., Yang, J.K.W., Bita, I., Thomas, E.L., Smith, H.I., Berggren, K.K., Vancso, G.J., Cheng, J.Y., J. Vac. Sci. Technol. B 26, 2489 (2008).CrossRefGoogle Scholar
Peng, Q., Tseng, Y.-C., Darling, S.B., Elam, J.W., ACS Nano 5, 4600 (2011).CrossRefGoogle Scholar
Kim, S.H., Misner, M.J., Yang, L., Gang, O., Ocko, B.M., Russell, T.P., Macromolecules 39, 8473 (2006).CrossRefGoogle Scholar
Zhao, Y., Thorkelsson, K., Mastroianni, A.J., Schilling, T., Luther, J.M., Rancatore, B.J., Matsunaga, K., Jinnai, H., Wu, Y., Poulsen, D., Fréchet, J.M.J., Alivisatos, A.P., Xu, T., Nat. Mater. 8, 979 (2009).CrossRefGoogle Scholar
Yi, H., Bao, X.-Y., Tiberio, R., Wong, H.-S.P., Nano Lett. 15, 805 (2015).CrossRefGoogle Scholar
Black, C.T., Ruiz, R., Breyta, G., Cheng, J.Y., Colburn, M.E., Guarini, K.W., Kim, H.-C., Zhang, Y., IBM J. Res. Dev. 51, 605 (2007).CrossRefGoogle Scholar
Xiao, S., Yang, X., Edwards, E.W., La, Y.-H., Nealey, P.F., Nanotechnology 16, S324 (2005).CrossRefGoogle Scholar
Yang, X., Wan, L., Xiao, S., Xu, Y., Weller, D.K., ACS Nano 3, 1844 (2009).CrossRefGoogle Scholar
Cheng, J.Y., Ross, C.A., “Block Copolymer Lithography for Magnetic Device Fabrication,” in Polymer Thin Films, Series in Soft Condensed Matter, vol. 1, Tsui, O.K.C., Russell, T.P., Eds. (World Scientific, Singapore, 2008), chap. 4, p. 77.CrossRefGoogle Scholar
Guenther, M., Kuckling, D., Corten, C., Gerlach, G., Sorber, J., Suchaneck, G., Arndt, K., Sens. Actuators B 126, 97 (2007).CrossRefGoogle Scholar
Jeong, C.K., Jin, H.M., Ahn, J.-H., Park, T.J., Yoo, H.G., Koo, M., Choi, Y.-K., Kim, S.O., Lee, K.J., Small 10, 213 (2014).CrossRefGoogle Scholar
Kang, Y., Walish, J.J., Gorishnyy, T., Thomas, E.L., Nat. Mater. 6, 957 (2007).CrossRefGoogle Scholar
Zhang, Q., Cirpan, A., Russell, T.P., Emrick, T., Macromolecules 42, 1079 (2009).CrossRefGoogle Scholar
Metz, S.J., Potreck, J., Mulder, M.H.V., Wessling, M., Desalination 148, 303 (2002).CrossRefGoogle Scholar
Fonseca, C., Somervell, M., Scheer, S., Kuwahara, Y., Nafus, K., Gronheid, R., Tarutani, S., Enomoto, Y., Proc. SPIE 7640, Opt. Microlithogr. XXIII, Dusa, M.V., Conley, W., Eds. (SPIE, Bellingham, WA, 2010) p. 76400E.Google Scholar
Sinturel, C., Bates, F.S., Hillmyer, M.A., ACS Macro Lett. 4(9), 1044 (2015).CrossRefGoogle Scholar
Kim, H.-C., Park, S.-M., Hinsberg, W.D., Chem. Rev. 110, 146 (2010).CrossRefGoogle Scholar
Delgadillo, P.A.R.J., Gronheid, R., Thode, C.J., Wu, H., Cao, Y., Neisser, M., Somervell, M., Nafus, K., Nealey, P.F., J. Micro/Nanolithogr. MEMS MOEMS 11, 031302 (2012).CrossRefGoogle Scholar
Bai, W., Hannon, A.F., Gotrik, K.W., Choi, H.K., Aissou, K., Liontos, G., Ntetsikas, K., Alexander-Katz, A., Avgeropoulos, A., Ross, C.A., Macromolecules 47, 6000 (2014).CrossRefGoogle Scholar
Aissou, K., Choi, H.K., Nunns, A., Manners, I., Ross, C.A., Nano Lett. 13, 835 (2013).CrossRefGoogle Scholar
Park, W.I., Kim, Y., Jeong, J.W., Kim, K., Yoo, J.-K., Hur, Y.H., Kim, J.M., Thomas, E.L., Alexander-Katz, A., Jung, Y.S., Sci. Rep. 3, 3190 (2013).CrossRefGoogle Scholar
Cheng, J.Y., Mayes, A.M., Ross, C.A., Nat. Mater. 3, 823 (2004).CrossRefGoogle Scholar
Bita, I., Yang, J.K.W., Jung, Y.S., Ross, C.A., Thomas, E.L., Berggren, K.K., Science 21, 939 (2008).CrossRefGoogle Scholar
Kim, S.O., Solak, H.H., Stoykovich, M.P., Ferrier, N.J., de Pablo, J.J., Nealey, P.F., Nature 424, 411 (2003).CrossRefGoogle Scholar
Segalman, R.A., Yokoyama, H., Kramer, E.J., Adv. Mater. 13, 1152 (2001).3.0.CO;2-5>CrossRefGoogle Scholar
Mansky, P., Liu, Y., Huang, E., Russell, T.P., Hawker, C., Science 275, 1458 (1997).CrossRefGoogle Scholar
Wu, Y., Cheng, G., Katsov, K., Sides, S.W., Wang, J., Tang, J., Fredrickson, G.H., Moskovits, M., Stucky, G.D., Nat. Mater. 3, 816 (2004).CrossRefGoogle Scholar
Hu, H., Gopinadhan, M., Osuji, C.O., Soft Matter 10, 3867 (2014).CrossRefGoogle ScholarPubMed
Luo, M., Epps, T.H., Macromolecules 46, 7567 (2013).CrossRefGoogle Scholar
Tavakkoli, K.G.A., Gotrik, K.W., Hannon, A.F., Alexander-Katz, A., Ross, C.A., Berggren, K.K., Science 336, 1294 (2012).CrossRefGoogle Scholar
Bosworth, J.K., Paik, M.Y., Ruiz, R., Schwartz, E.L., Huang, J.Q., Ko, A.W., Smilgies, D.-M., Black, C.T., Ober, C.K., ACS Nano 2, 1396 (2008).CrossRefGoogle Scholar
Tsai, H., Pitera, J.W., Miyazoe, H., Bangsaruntip, S., Engelmann, S.U., Liu, C.-C., Cheng, J.Y., Bucchignano, J.J., Klaus, D.P., Joseph, E.A., Sanders, D.P., Colburn, M.E., Guillorn, M.A., ACS Nano 8, 5227 (2014).CrossRefGoogle Scholar
Sundrani, D., Darling, S.B., Sibener, S.J., Nano Lett. 4, 273 (2004).CrossRefGoogle Scholar
Segalman, R.A., Hexemer, A., Kramer, E.J., Macromolecules 36, 6831 (2003).CrossRefGoogle Scholar
Ruiz, R., Kang, H., Detcheverry, F.A., Dobisz, E., Kercher, D.S., Albrecht, T.R., de Pablo, J.J., Nealey, P.F., Science 321, 936 (2008).CrossRefGoogle Scholar
Stoykovich, M.P., Müller, M., Kim, S.O., Solak, H.H., Edwards, E.W., de Pablo, J.J., Nealey, P.F., Science 308, 1442 (2005).CrossRefGoogle Scholar
Cheng, J.Y., Rettner, C.T., Sanders, D.P., Kim, H.-C., Hinsberg, W.D., Adv. Mater. 20, 3155 (2008).CrossRefGoogle Scholar
Hannon, A.F., Ding, Y., Bai, W., Ross, C.A., Alexander-Katz, A., Nano Lett. 14, 318 (2014).CrossRefGoogle Scholar
Chang, J.-B., Choi, H.K., Hannon, A.F., Alexander-Katz, A., Ross, C.A., Berggren, K.K., Nat. Commun. 5, 3305 (2014).CrossRefGoogle Scholar
Khaira, G.S., Qin, J., Garner, G.P., Xiong, S., Wan, L., Ruiz, R., Jaeger, H.M., Nealey, P.F., de Pablo, J.J., ACS Macro Lett. 3, 747 (2014).CrossRefGoogle Scholar
Yang, J.K.W., Jung, Y.S., Chang, J.-B., Mickiewicz, R.A., Alexander-Katz, A., Ross, C.A., Berggren, K.K., Nat. Nanotechnol. 5, 256 (2010).CrossRefGoogle Scholar
Jung, Y.S., Ross, C.A., Nano Lett. 7, 2046 (2007).CrossRefGoogle Scholar
Liu, C.-C., Nealey, P.F., Raub, A.K., Hakeem, P.J., Brueck, S.R.J., Han, E., Gopalan, P., J. Vac. Sci. Technol. B 28, C6B30 (2010).CrossRefGoogle Scholar
Cheng, J.Y., Sanders, D.P., Truong, H.D., Harrer, S., Friz, A., Holmes, S., Colburn, M., Hinsberg, W.D., ACS Nano 4, 4815 (2010).CrossRefGoogle Scholar
Bates, C.M., Seshimo, T., Maher, M.J., Durand, W.J., Cushen, J.D., Dean, L.M., Blachut, G., Ellison, C.J., Willson, C.G., Science 338, 775 (2012).CrossRefGoogle Scholar
Kim, E., Kim, W., Lee, K.H., Ross, C.A., Son, J.G., Adv. Funct. Mater. 24, 44, 6981 (2014).CrossRefGoogle Scholar
Hong, S.W., Gu, W., Huh, J., Sveinbjornsson, B.R., Jeong, G., Grubbs, R.H., Russell, T.P., ACS Nano 7, 9684 (2013).CrossRefGoogle Scholar
Olszowka, V., Hund, M., Kuntermann, V., Scherdel, S., Tsarkova, L., Böker, A., ACS Nano 3, 1091 (2009).CrossRefGoogle Scholar
Osuji, C., Ferreira, P.J., Mao, G., Ober, C.K., Vander Sande, J.B., Thomas, E.L., Macromolecules 37, 9903 (2004).CrossRefGoogle Scholar
Singh, G., Yager, K.G., Berry, B., Kim, H.-C., Karim, A., ACS Nano 6, 10335 (2012).CrossRefGoogle Scholar
Hashimoto, T., Bodycomb, J., Funaki, Y., Kimishima, K., Macromolecules 32, 952 (1999).CrossRefGoogle Scholar
Cui, G., Fujikawa, M., Nagano, S., Shimokita, K., Miyazaki, T., Sakurai, S., Yamamoto, K., Macromolecules 47, 5989 (2014).CrossRefGoogle Scholar
Angelescu, D.E., Waller, J.H., Adamson, D.H., Deshpande, P., Chou, S.Y., Register, R.A., Chaikin, P.M., Adv. Mater. 16, 1736 (2004).CrossRefGoogle Scholar
Tang, C., Wu, W., Smilgies, D.-M., Matyjaszewski, K., Kowalewski, T., J. Am. Chem. Soc. 133, 11802 (2011).CrossRefGoogle Scholar
Onses, M.S., Ramírez-Hernández, A., Hur, S.-M., Sutanto, E., Williamson, L., Alleyne, A.G., Nealey, P.F., de Pablo, J.J., Rogers, J.A., ACS Nano 8, 6606 (2014).CrossRefGoogle Scholar
Hu, H., Choo, Y., Feng, X., Osuji, C.O., Macromol. Rapid Commun. 36, 1290 (2015).CrossRefGoogle Scholar
Böker, A., Elbs, H., Hänsel, H., Knoll, A., Ludwigs, S., Zettl, H., Urban, V., Abetz, V., Müller, A.H.E., Krausch, G., Phys. Rev. Lett. 89, 135502 (2002).CrossRefGoogle Scholar
Hamley, I.W., Nanotechnology 14, R39 (2003).CrossRefGoogle Scholar
Tu, K.-H., Bai, W., Liontos, G., Ntetsikas, K., Avgeropoulos, A., Ross, C.A., Nanotechnology 26, 375301 (2015).CrossRefGoogle Scholar
Cheng, J.Y., Ross, C.A., Chan, V.Z.-H., Thomas, E.L., Lammertink, R.G.H., Vancso, G.J., Adv. Mater. 13, 1174 (2001).3.0.CO;2-Q>CrossRefGoogle Scholar
Thurn-Albrecht, T., Schotter, J., Kastle, G.A., Emley, N., Shibauchi, T., Guarini, K., Black, C.T., Tuominen, M.T., Russell, T.P., Science 290, 2126 (2000).CrossRefGoogle Scholar
Black, C.T., Guarini, K.W., Sandstrom, R.L., Yeung, S., Zhang, Y., “Formation of Nanometer-Scale Dot Arrays from Diblock Copolymer Templates,”Mater. Res. Soc. Symp. Proc. 728, Moss, S.C., Ed. (Materials Research Society, Warrendale, PA, 2002), p. S4.9.Google Scholar
Shin, D.O., Mun, J.H., Hwang, G.-T., Yoon, J.M., Kim, J.Y., Yun, J.M., Yang, Y.-B., Oh, Y., Lee, J.Y., Shin, J., Lee, K.J., Park, S., Kim, J.U., Kim, S.O., ACS Nano 7, 8899 (2013).CrossRefGoogle Scholar
Kim, J.Y., Kim, B.H., Hwang, J.O., Jeong, S.-J., Shin, D.O., Mun, J.H., Choi, Y.J., Jin, H.M., Kim, S.O., Adv. Mater. 25, 1331 (2013).CrossRefGoogle Scholar
Rose, F., Bosworth, J.K., Dobisz, E.A., Ruiz, R., Nanotechnology 22, 035603 (2011).CrossRefGoogle Scholar
Thorkelsson, K., Mastroianni, A.J., Ercius, P., Xu, T., Nano Lett. 12, 498 (2012).CrossRefGoogle Scholar
Jeong, J.W., Hur, Y.H., Kim, H.-J., Kim, J.M., Park, W.I., Kim, M.J., Kim, B.J., Jung, Y.S., ACS Nano 7, 6747 (2013).CrossRefGoogle Scholar
Majewski, P.W., Rahman, A., Black, C.T., Yager, K.G., Nat. Commun. 6, 7448 (2015).CrossRefGoogle Scholar
Son, J.G., Hannon, A.F., Gotrik, K.W., Alexander-Katz, A., Ross, C.A., Adv. Mater. 23, 634 (2011).CrossRefGoogle Scholar
Hong, S.W., Huh, J., Gu, X., Lee, D.H., Jo, W.H., Park, S., Xu, T., Russell, T.P., Proc. Natl. Acad. Sci. U.S.A. 109, 1402 (2012).CrossRefGoogle Scholar
Vignolini, S., Yufa, N.A., Cunha, P.S., Guldin, S., Rushkin, I., Stefik, M., Hur, K., Wiesner, U., Baumberg, J.J., Steiner, U., Adv. Mater. 24, OP23 (2012).CrossRefGoogle Scholar
Peng, Q., Tseng, Y.-C., Darling, S.B., Elam, J.W., Adv. Mater. 22, 5129 (2010).CrossRefGoogle Scholar
Mendoza, C., Pietsch, T., Gutmann, J.S., Jehnichen, D., Gindy, N., Fahmi, A., Macromolecules 42, 1203 (2009).CrossRefGoogle Scholar
Warren, S.C., Messina, L.C., Slaughter, L.S., Kamperman, M., Zhou, Q., Gruner, S.M., DiSalvo, F.J., Wiesner, U., Science 320, 1748 (2008).CrossRefGoogle Scholar
Kao, J., Thorkelsson, K., Bai, P., Zhang, Z., Sun, C., Xu, T., Nat. Commun. 5, 4053 (2014).CrossRefGoogle Scholar
Tseng, Y.-C., Darling, S.B., Polymers (Basel) 2, 470 (2010).CrossRefGoogle Scholar
Jung, Y.S., Jung, W., Ross, C.A., Nano Lett. 8, 2975 (2008).CrossRefGoogle Scholar
Black, C.T., Appl. Phys. Lett. 87, 163116 (2005).CrossRefGoogle Scholar
Son, J.G., Son, M., Moon, K.-J., Lee, B.H., Myoung, J.-M., Strano, M.S., Ham, M.-H., Ross, C.A., Adv. Mater. 25, 4723 (2013).CrossRefGoogle Scholar
Black, C.T., Guarini, K.W., Zhang, Y., Kim, H., Benedict, J., Sikorski, E., Babich, I.V., Milkove, K.R., IEEE Electron Device Lett. 25, 622 (2004).CrossRefGoogle Scholar
Park, W.I., You, B.K., Mun, B.H., Seo, H.K., Lee, J.Y., Hosaka, S., Yin, Y., Ross, C.A., Lee, K.J., Jung, Y.S., ACS Nano 7, 2651 (2013).CrossRefGoogle Scholar
You, B.K., Park, W.I., Kim, J.M., Park, K.-I., Seo, H.K., Lee, J.Y., Jung, Y.S., Lee, K.J., ACS Nano 8, 9492 (2014).CrossRefGoogle Scholar
Jeong, C.K., Baek, K.M., Niu, S., Nam, T.W., Hur, Y.H., Park, D.Y., Hwang, G.-T., Byun, M., Wang, Z.L., Jung, Y.S., Lee, K.J., Nano Lett. 14, 7031 (2014).CrossRefGoogle Scholar
Lim, H.S., Lee, J.-H., Walish, J.J., Thomas, E.L., ACS Nano 6, 8933 (2012).CrossRefGoogle Scholar
Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., Stucky, G.D., Science 279, 5350 (1998).Google Scholar
Hedrick, J.L., Miller, R.D., Hawker, C.J., Carter, K.R., Volksen, W., Yoon, D.Y., Trollsås, M., Adv. Mater. 10, 1049 (1998).3.0.CO;2-F>CrossRefGoogle Scholar
Phillip, W.A., Dorin, R.M., Werner, J., Hoek, E.M.V., Wiesner, U., Elimelech, M., Nano Lett. 11, 2892 (2011).CrossRefGoogle Scholar
Yang, S.Y., Park, J., Yoon, J., Ree, M., Jang, S.K., Kim, J.K., Adv. Funct. Mater. 18, 1371 (2008).CrossRefGoogle Scholar
Jackson, E.A., Hillmyer, M.A., ACS Nano 4, 3548 (2010).CrossRefGoogle Scholar
Guo, C., Lin, Y.-H., Witman, M.D., Smith, K.A., Wang, C., Hexemer, A., Strzalka, J.W., Gomez, E.D., Verduzco, R., Nano Lett. 13 (6), 2957 (2013).CrossRefGoogle Scholar
Javier, A.E., Patel, S.N., Hallinan, D.T., Srinivasan, V., Balsara, N.P., Angew. Chem. Int. Ed. Engl. 50, 9848 (2011).CrossRefGoogle Scholar
Orilall, M.C., Wiesner, U., Chem. Soc. Rev. 40, 520 (2011).CrossRefGoogle Scholar
Checco, A., Rahman, A., Black, C.T., Adv. Mater. 26, 886 (2014).CrossRefGoogle Scholar
Rahman, A., Ashraf, A., Xin, H., Tong, X., Sutter, P., Eisaman, M.D., Black, C.T., Nat. Commun. 6, 5963 (2015).CrossRefGoogle Scholar
Adams, M.L., Lavasanifar, A., Kwon, G.S., J. Pharm. Sci. 92, 1343 (2003).CrossRefGoogle Scholar
Balazs, A.C., Emrick, T., Russell, T.P., Science 314, 1107 (2006).CrossRefGoogle Scholar
Bockstaller, M.R., Mickiewicz, R.A., Thomas, E.L., Adv. Mater. 17, 1331 (2005).CrossRefGoogle Scholar
Chiu, J.J., Kim, B.J., Kramer, E.J., Pine, D.J., J. Am. Chem. Soc. 127, 5036 (2005).CrossRefGoogle Scholar
Guldin, S., Kolle, M., Stefik, M., Langford, R., Eder, D., Wiesner, U., Steiner, U., Adv. Mater. 23, 3664 (2011).CrossRefGoogle Scholar
Hsueh, H.-Y., Chen, H.-Y., Hung, Y.-C., Ling, Y.-C., Gwo, S., Ho, R.-M., Adv. Mater. 25, 1780 (2013).CrossRefGoogle Scholar
Tao, Y., McCulloch, B., Kim, S., Segalman, R.A., Soft Matter 5, 4219 (2009).CrossRefGoogle Scholar
Darling, S.B., Energy Environ. Sci. 2, 1266 (2009).CrossRefGoogle Scholar