Published online by Cambridge University Press: 09 March 2018
Materials chemistry was in its infancy when I started my independent research efforts in India after returning from the United States in the late 1950s. I have investigated phase transformations of TiO2 and CsCl, and also carried out defect calculations. While working on rare-earth oxides, I made TbO2 and PrO2 by a simple solution route; this is probably an early example of chimie douce (soft chemistry). I started working on transition-metal oxides by building simple instruments, including a thermobalance and furnaces. In 1987, we were able to fully characterize the first liquid N2 superconductor (YBa2Cu3O7) using a home-built AC susceptometer. Oxides have been of great interest to me because of the variety of phenomena exhibited by them. I have studied various aspects of transition-metal oxides, including metal-insulator transitions, colossal magnetoresistance, and multiferroics. The last two decades have included research on synthesis, characterization, and properties of various nanomaterials, and in particular, two-dimensional nanosheets (graphene and its inorganic analogues). Two-dimensional sheets and other nanomaterials have been covalently cross-linked to derive new materials with novel properties. Work on water splitting and reduction of CO2, besides using aliovalent anion substitution to generate novel inorganics (Zn2NF in place of ZnO), has also been conducted.
The following article is based on the Von Hippel Award presentation given by C.N.R. Rao at the 2017 Materials Research Society Fall Meeting in Boston, Mass. Rao was recognized “for his immense interdisciplinary contributions to the development of novel functional materials, including magnetic and electronic properties of transition-metal oxides, nanomaterials such as fullerenes, graphene and two-dimensional inorganic solids, and superconductivity and colossal magnetoresistance in rare-earth cuprates and manganates.”