Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T04:29:36.712Z Has data issue: false hasContentIssue false

Graphene applications in electronics and photonics

Published online by Cambridge University Press:  23 November 2012

Phaedon Avouris
Affiliation:
IBM, Watson Research Center; avouris@us.ibm.com
Fengnian Xia
Affiliation:
IBM, Watson Research Center; fxia@us.ibm.com
Get access

Abstract

Graphene is a material with outstanding properties that make it an excellent candidate for advanced applications in future electronics and photonics. The potential of graphene in high-speed analog electronics is currently being explored extensively because of its high carrier mobility, its high carrier saturation velocity, and the insensitivity of its electrical-transport behavior to temperature variations. Herein, we review some of the key material and carrier-transport physics of graphene, then focus on high-frequency graphene field-effect transistors, and finally discuss graphene monolithically integrated circuits (ICs). These high-frequency graphene transistors and ICs could become essential elements in the blossoming fields of wireless communications, sensing, and imaging. After discussing graphene electronics, we describe the impressive photonic properties of graphene. Graphene interacts strongly with light over a very wide spectral range from microwaves to ultraviolet radiation. Most importantly, the light–graphene interaction can be adjusted using an electric field or chemical dopant, making graphene-based photonic devices tunable. Single-particle interband transitions lead to a universal optical absorption of about 2% per layer, whereas intraband free-carrier transitions dominate in the microwave and terahertz wavelength range. The tunable plasmonic absorption of patterned graphene adds yet another dimension to graphene photonics. We show that these unique photonic properties of graphene over a broad wavelength range make it promising for many photonic applications such as fast photodetectors, optical modulators, far-infrared filters, polarizers, and electromagnetic wave shields. These graphene photonic devices could find various applications in optical communications, infrared imaging, and national security.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, D.M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L., Solid State Commun. 146, 351 (2008).CrossRefGoogle Scholar
Du, X., Skachko, I., Barker, A., Andrei, E.Y., Nat. Nanotechnol. 3, 491 (2008).CrossRefGoogle Scholar
Schwierz, F., Nat. Nanotechnol. 5, 487 (2010).CrossRefGoogle Scholar
Balandin, A., Nat. Nanotechnol. 10, 569 (2011).Google Scholar
Adam, S., Hwang, E.H., Galitski, V.M., Das Sarma, S., Proc. Natl. Acad. Sci. U.S.A. 104, 18392 (2007).CrossRefGoogle Scholar
Chen, J.-H., Jang, C., Ishigami, M., Xiao, S., Gullen, W.G., Williams, E.D., Fuhrer, M.S., Solid State Commun. 149, 1080 (2009).CrossRefGoogle Scholar
Chen, J.-H., Chaun, C., Jang, C., Xiao, S., Ishigami, M., Fuhrer, M.S., Nat. Nanotechnol. 3, 206 (2008).CrossRefGoogle Scholar
Nomura, K., MacDonald, A.H., Phys. Rev. Lett. 96, 256602 (2006).CrossRefGoogle Scholar
Zhu, W., Perebeinos, V., Freitag, M., Avouris, Ph., Phys. Rev. B 80, 235402 (2009).CrossRefGoogle Scholar
Katsnelson, M.I., Geim, A.K., Philos. Trans. R. Soc. A 366, 195 (2008).CrossRefGoogle Scholar
Farmer, D.B., Perebeinos, V., Lin, Y.-M., Dimitrakopoulos, C., Avouris, Ph., Phys. Rev. B 84, 205417 (2011).CrossRefGoogle Scholar
Chen, J.-H., Cullen, W.G., Jang, C., Fuhrer, M.S., Williams, E.D., Phys. Rev. Lett. 102, 236805 (2009).CrossRefGoogle Scholar
Ando, T., J. Phys. Soc. Jpn. 75, 074716 (2006).CrossRefGoogle Scholar
Chen, J.-H., Jang, C., Ishigami, M., Xiao, S., Cullen, W.G., Williams, E.D., Fuhrer, M.S., Solid State Commun. 149, 1080 (2009).CrossRefGoogle Scholar
Wu, Y., Perebeinos, V., Lin, Y.-M., Low, T., Xia, F., Avouris, Ph., Nano Lett. 12, 1417 (2012).CrossRefGoogle Scholar
Tan, Y.-W., Zhang, Y., Bolotin, K., Zhao, Y., Adam, S., Hwang, E.H., Das Sarma, S., Stormer, H.L., Kim, P., Phys. Rev. Lett. 99, 246803 (2007).CrossRefGoogle Scholar
Wu, Y., Jerkins, K.A., Valdes-Garcia, A., Farmer, D.B., Zhu, Y., Bol, A.A., Dimitrakopoulos, C., Zhu, W., Xia, F., Avouris, Ph., Lin, Y.-M., Nano Lett. 12, 3062 (2012).CrossRefGoogle Scholar
Giovannetti, G., Khomyakov, P.A., Brocks, G., Karpan, V.M., van den Brink, J., Kelly, P.J., Phys. Rev. Lett. 101, 026803 (2008).CrossRefGoogle Scholar
Khomyakov, P.A., Giovannetti, G., Rusu, P.C., Brocks, G., van den Brink, J., Kelly, P.J., Phys. Rev. B 79, 195425 (2009).CrossRefGoogle Scholar
Xia, F., Perebeinos, V., Lin, Y.-M., Wu, Y., Avouris, Ph., Nat. Nanotechnol. 6, 179 (2011).CrossRefGoogle Scholar
Huard, B., Stander, N., Sulpizio, J.A., Goldhaber-Gordon, D., Phys. Rev. B 78, 121402 (2008).CrossRefGoogle Scholar
Cayssol, J., Huard, B., Goldhaber-Gordon, D., Phys. Rev. B 79, 075428 (2009).CrossRefGoogle Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I., Firsov, A.A., Science 306, 666 (2004).CrossRefGoogle Scholar
Badami, D.V., Nature 193, 569 (1962).CrossRefGoogle Scholar
van Bommel, A.J., Crombeen, J.E., van Tooren, A., Surf. Sci. 48, 463 (1975).CrossRefGoogle Scholar
Forbeaux, I., Themlin, J.-M., Charrier, A., Thibaudau, F., Debever, J.-M., Appl. Surf. Sci. 162163, 406 (2000).CrossRefGoogle Scholar
Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A.Y., Feng, R., Dai, Z., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A., J. Phys. Chem. B 108, 19912 (2004).CrossRefGoogle Scholar
Avouris, Ph., Dimitrakopoulos, C., Mater. Today 15, 86 (2012).CrossRefGoogle Scholar
May, J.W., Surf. Sci. 17, 267 (1969).CrossRefGoogle Scholar
Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., Kong, J., Nano Lett. 9, 30 (2009).CrossRefGoogle Scholar
Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R.D., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff, R.S., Science 324, 1312 (2009).CrossRefGoogle Scholar
Chen, S., Cai, W., Piner, R.D., Suk, J.W., Wu, Y., Ren, Y., Kang, J., Ruoff, R.S., Nano Lett. 11, 3519 (2011).CrossRefGoogle Scholar
Farmer, D.B., Chiu, H.-Y., Lin, Y.-M., Jenkins, K., Xia, F., Avouris, Ph., Nano Lett. 9, 4474 (2009).CrossRefGoogle Scholar
Zhu, W., Neumayer, D., Perebeinos, V., Avouris, Ph., Nano Lett. 10, 3572 (2010).CrossRefGoogle Scholar
Kim, S., Nah, J., Jo, I., Shahrjerdi, D., Colombo, L., Yao, Z., Tutuc, E., Banerjee, S.K., Appl. Phys. Lett. 94, 062107 (2009).CrossRefGoogle Scholar
Wu, Y., Farmer, D.B., Valdes-Garcia, A., Zhu, W., Jenkins, K.A., Dimitrakopoulos, C., Avouris, Ph., Lin, Y.-M., Tech. Dig.–Int. Electron Devices Meet. 6131601 (2011).Google Scholar
Wu, Y., Lin, Y.-M., Bol, A.A., Jenkins, K.A., Xia, F., Farmer, D.B., Zhu, Y., Avouris, Ph., Nature 472, 74 (2011).CrossRefGoogle Scholar
Lemme, M.C., Echtermeyer, T.J., Baus, M., Kurz, J., IEEE Electron Device Lett. 28, 282 (2007).CrossRefGoogle Scholar
Kedzierski, J., Hsu, P.L., Healey, P., Wyatt, P.W., Keast, C.L., Sprinkle, M., Berger, C., de Heer, W.A., IEEE Trans. Electron Devices 55, 2078 (2008).CrossRefGoogle Scholar
Meric, I., Baklitskaya, N., Kim, P., Shepard, K.L., Tech. Dig.–Int. Electron Devices Meet. 4796738 (2008).Google Scholar
Moon, J.S., Curtis, D., Hu, M., Wong, D., McGuire, C., Campbell, P.M., Jernigan, G., Tedesco, J.L., VanMil, B., Myers-Ward, R., Eddy, C., Gaskill, D.K., IEEE Electron Device Lett. 30, 650 (2009).CrossRefGoogle Scholar
Lin, Y.-M., Jenkins, K.A., Valdes-Garcia, A., Small, J.P., Farmer, D.B., Avouris, Ph., Nano Lett. 9, 422 (2009).CrossRefGoogle Scholar
Lin, Y.-M., Chiu, C.-Y., Jenkins, K.A., Farmer, D.B., Avouris, Ph., IEEE Electron Device Lett. 31, 68 (2010).Google Scholar
Lin, Y.-M., Dimitrakopoulos, C., Jenkins, K.A., Farmer, D.B., Chiu, H.-Y., Grill, A., Avouris, Ph., Science 327, 662 (2010).CrossRefGoogle Scholar
Liao, L., Lin, Y., Bao, M., Cheng, R., Bai, J., Liu, Y., Qu, Y., Wang, K.L., Huang, Y., Duan, X., Nature 467, 305 (2010).CrossRefGoogle Scholar
Lin, Y.-M., Valdes-Garcia, A., Han, S.-J., Farmer, D.B., Meric, I., Sun, Y., Wu, Y., Dimitrakopoulos, C., Grill, A., Avouris, Ph., Jenkins, K.A., Science 332, 1294 (2011).CrossRefGoogle Scholar
Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K.L., Hone, J., Nat. Nanotechnol. 5, 722 (2010).CrossRefGoogle Scholar
Britnell, L., Gorbachev, R.V., Jalil, R., Belle, B.D., Schedin, F., Mishchenko, A., Georgiou, T., Katsnelson, M.I., Eaves, L., Morozov, S.V., Peres, N.M. R., Leist, J., Geim, A.K., Novoselov, K.S., Ponomarenko, L.A., Science 335, 947 (2012).CrossRefGoogle Scholar
Xue, J., Sanchez-Yamagishi, J., Bulmash, D., Jacquod, P., Deshpande, A., Watanabe, K., Taniguchi, T., Jarillo-Herrero, P., LeRoy, B.J., Nat. Mater. 10, 282 (2011).CrossRefGoogle Scholar
Decker, R., Wang, Y., Brar, V.W., Regan, W., Tsai, H., Wu, Q., Gannett, W., Zettl, A., Crommie, M.F., Nano Lett. 11, 2291 (2011).CrossRefGoogle Scholar
Liu, Z., Song, L., Zhao, S., Huang, J., Ma, L., Zhang, J., Lou, J., Ajayan, P.M., Nano Lett. 11, 2032 (2011).CrossRefGoogle Scholar
Han, W., Hsu, A., Wu, J., Kong, J., Palacios, T., IEEE Electron Device Lett. 31, 906 (2010).Google Scholar
Guerriero, E., Polloni, L., Giorgi Rizzi, L., Bianchi, M., Mondello, G., Sordan, R., Small 357 (2012).CrossRefGoogle Scholar
Han, S.-J., Jenkins, K.A., Valdes-Garcia, A., Franklin, A.D., Bol, A.A., Haensch, W., Nano Lett. 11, 3690 (2011).CrossRefGoogle Scholar
Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K., Science 320, 1308 (2008).CrossRefGoogle Scholar
Kuzmenko, A.B., Van Heumen, E., Carbone, F., van der Marel, D., Phys. Rev. Lett. 100, 117401 (2008).CrossRefGoogle Scholar
Mak, K.F., Sfeir, M.Y., Wu, Y., Lui, C., Misewich, J.A., Heinz, T.F., Phys. Rev. Lett. 101, 196405 (2008).CrossRefGoogle Scholar
Wang, F., Zhang, Y., Tian, C., Girit, C., Zettl, A., Crommie, M., Shen, Y.R., Science 320, 206 (2008).CrossRefGoogle Scholar
Mak, K.F., Shan, J., Heinz, T.F., Phys. Rev. Lett. 106, 046401 (2011).CrossRefGoogle Scholar
Chae, D.H., Utikal, T., Weisenburger, S., Giessen, H., Klitzing, K.v., Lippitz, M., Smet, J., Nano Lett. 11, 1379 (2011).CrossRefGoogle Scholar
Yang, L., Cohen, M.L., Louie, S.G., Nano Lett. 7, 3112 (2007).CrossRefGoogle Scholar
Malic, E., Winzer, T., Bobkin, E., Knorr, A., Phys. Rev. B 84, 205406 (2011).CrossRefGoogle Scholar
Kim, R., Perebeinos, V., Avouris, Ph., Phys. Rev. B 84, 075449 (2011).CrossRefGoogle Scholar
Bistritzer, R., MacDonald, A.H., Phys. Rev. Lett. 102, 206410 (2009).CrossRefGoogle Scholar
Farmer, D.B., Golizadeh-Mojarad, R., Perebeinos, V., Lin, Y.-M., Tulevski, G.S., Tsang, J.C., Avouris, Ph., Nano Lett. 9, 388 (2009).CrossRefGoogle Scholar
Williams, J.R., DiCarlo, L., Marcus, C.M., Science 317, 638 (2007).CrossRefGoogle Scholar
Lee, E.J.H., Balasubramanian, K., Weitz, R.T., Burghard, M., Kern, K., Nat. Nanotechnol. 3, 486 (2008).CrossRefGoogle Scholar
Park, J., Ahn, Y.H., Ruiz-Vargas, C., Nano Lett. 9, 1742 (2009).CrossRefGoogle Scholar
Xia, F., Mueller, T., Golizadeh-Mojarad, R., Freitag, M., Lin, Y.-M., Tsang, J.C., Perebeinos, V., Avouris, Ph., Nano Lett. 9, 1039 (2009).CrossRefGoogle Scholar
Mueller, T., Xia, F., Freitag, M., Tsang, J.C., Avouris, Ph., Phys. Rev. B 79, 245430 (2009).CrossRefGoogle Scholar
Xu, X., Gabor, N.M., Alden, J.S., van der Zande, A.M., McEuen, P.L., Nano Lett. 10, 562 (2010).CrossRefGoogle Scholar
Song, J.C., Rudner, M.S., Marcus, C.M., Levitov, L.S., Nano Lett. 11, 4688 (2011).CrossRefGoogle Scholar
Gabor, N.M., Song, J.C.W., Ma, Q., Nair, N.L., Taychatanapwat, T., Watanabe, K., Taniguchi, T., Levitov, L.S., Jarillo-Herrero, P., Science 334, 648 (2011).CrossRefGoogle Scholar
Yan, H., Xia, F., Zhu, W., Freitag, M., Dimitrakopoulos, C., Bol, A.A., Tulevski, G., Avouris, Ph., ACS Nano 5, 9854 (2011).CrossRefGoogle Scholar
Yan, H., Li, X., Chandra, B., Tulevski, G., Wu, Y., Freitag, M., Zhu, W., Avouris, Ph., Xia, F., Nat. Nanotechnol. 7, 330 (2012).CrossRefGoogle Scholar
Koppens, F.H.L., Chang, D.E., García de Abajo, F.J., Nano Lett. 11, 3370 (2011).CrossRefGoogle Scholar
Ju, L., Geng, B., Horng, J., Girit, C., Martin, M., Hao, Z., Bechtel, H.A., Liang, X., Zettl, A., Shen, Y.R., Wang, F., Nat. Nanotechnol. 6, 630 (2011).CrossRefGoogle Scholar
Halas, N., Lal, N.S., Chang, W.-S., Link, S., Nordlander, P., Chem. Rev. 111, 3913 (2011).CrossRefGoogle Scholar
Yan, H., Li, Z., Li, X., Zhu, W., Avouris, Ph., Xia, F., Nano Lett. 12, 3766 (2012).CrossRefGoogle Scholar
Xia, F., Mueller, T., Lin, Y.-M., Valdes-Garcia, A., Avouris, Ph., Nat. Nanotechnol. 4, 839 (2009).CrossRefGoogle Scholar
Mueller, T., Xia, F., Avouris, Ph., Nat. Photonics 4, 297 (2010).CrossRefGoogle Scholar
Echtermeyer, T.J., Britnell, L., Jasnos, P.K., Lombardo, A., Gorbachev, R.V., Grigorenko, A.N., Geim, A.K., Ferrari, A.C., Novoselov, K.S., Nat. Commun. 2, 458 (2011).CrossRefGoogle Scholar
Engel, M., Steiner, M., Lombardo, A., Ferrari, A.C., Loehneysen, H.v., Avouris, Ph., Krupke, R., Nat. Commun. 3, 906 (2011).CrossRefGoogle Scholar
Furchi, M., Urich, A., Pospischil, A., Lilley, G., Unterrainer, K., Detz, H., Klang, P., Andrews, A.M., Schrenk, W., Strasser, G., Mueller, T., Nano Lett. 12, 2773 (2012).CrossRefGoogle Scholar
Konstantatos, G., Badioli, M., Gaudreau, L., Osmond, J., Bernechea, M., de Arquer, P.G., Gatti, F., Koppens, F.H.L., Nat. Nanotechnol. 7, 363 (2012).CrossRefGoogle Scholar
Liu, M., Yin, X., Ulin-Avila, E., Geng, B., Zentgraf, T., Ju, L., Wang, F., Zhang, X., Nature 474, 64 (2011).CrossRefGoogle Scholar
Liu, M., Yin, X., Zhang, X., Nano Lett. 12, 1482 (2012).CrossRefGoogle Scholar
Bao, Q.L., Zhang, H., Wang, Y., Ni, Z., Yan, Y., Shen, Z., Loh, K., Tang, D., Adv. Funct. Mater. 19, 3077 (2009).CrossRefGoogle Scholar
Sun, Z., Hasan, T., Torrisi, F., Popa, D., Privitera, G., Wang, F., Bonaccorso, F., Basko, D.M., Ferrari, A.C., ACS Nano 4, 803 (2010).CrossRefGoogle Scholar