Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-03T23:28:15.244Z Has data issue: false hasContentIssue false

Graphene materials and devices in terahertz science and technology

Published online by Cambridge University Press:  23 November 2012

Taiichi Otsuji
Affiliation:
Tohoku University and JST-CREST, Japan; otsuji@riec.tohoku.ac.jp
Stephane Albon Boubanga Tombet
Affiliation:
Tohoku University, Japan; stephanealbon@hotmail.com
Akira Satou
Affiliation:
Tohoku University and JST-CREST, Japan; a-satou@riec.tohoku.ac.jp
Hirokazu Fukidome
Affiliation:
Tohoku University and JST-CREST, Japan; fukidome@riec.tohoku.ac.jp
Maki Suemitsu
Affiliation:
Tohoku University and JST-CREST, Japan; suemitsu@riec.tohoku.ac.jp
Eiichi Sano
Affiliation:
Hokkaido University and JST-CREST, Japan; esano@rciqe.hokudai.ac.jp
Vyacheslav Popov
Affiliation:
Russian Academy of Science, Russia; popov_slava@yahoo.co.uk
Maxim Ryzhii
Affiliation:
University of Aizu and JST-CREST, Japan; m-ryzhii@u-aizu.ac.jp
Victor Ryzhii
Affiliation:
Tohoku University and JST-CREST, Japan; v-ryzhii@riec.tohoku.ac.jp
Get access

Abstract

The gapless energy spectra and linear dispersion relations of electrons and holes in graphene lead to nontrivial features such as a high carrier mobility and a flat, broadband optical response. This article reviews recent advances in graphene-based materials and devices for terahertz science and technology. After an introduction to the fundamental basis of the optoelectronic properties of graphene, the synthesis and crystallographic characterization of graphene materials are described, with a particular focus on the authors’ original heteroepitaxial graphene-on-silicon technology. The nonequilibrium dynamics of carrier relaxation and recombination in optically or electrically pumped graphene is discussed to introduce the possibility of negative dynamic conductivity over a wide terahertz range. Recent theoretical advances toward the creation of current-injection graphene terahertz lasers are described, followed by the unique terahertz dynamics of two-dimensional plasmons in graphene. Finally, the advantages of graphene materials and devices for terahertz applications are summarized.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Frisov, A.A., Science 306, 666 (2004).CrossRefGoogle Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A., Nature 438, 197 (2005).CrossRefGoogle Scholar
Kim, P., Zhang, Y., Tan, Y.-W., Stormer, H.L., Nature 438, 201 (2005).Google Scholar
Geim, A.K., Novoselov, K.S., Nat. Mater. 6, 183 (2007).CrossRefGoogle Scholar
Fujita, M., Wakabayashi, K., Nakada, K., Kusakabe, K., J. Phys. Soc. Jpn. 65, 1920 (1996).CrossRefGoogle Scholar
Ando, T., Nakanishi, T., Saito, R., J. Phys. Soc. Jpn. 67, 2857 (1998).CrossRefGoogle Scholar
Saito, R., Takeya, T., Kimura, T., Dresselhaus, G., Dresselhaus, M.S., Phys. Rev. B 57, 4145 (1998).CrossRefGoogle Scholar
Wakabayashi, K., Sigrist, M., Fujita, M., J. Phys. Soc. Jpn. 67, 2089 (1998).CrossRefGoogle Scholar
Ryzhii, V., Ryzhii, M., Otsuji, T., J. Appl. Phys. 101, 083114 (2007).CrossRefGoogle Scholar
Ryzhii, M., Ryzhii, V., Jpn. J. Appl. Phys. 46, L151 (2007).CrossRefGoogle Scholar
Ryzhii, V., Ryzhii, M., Mitin, V., Otsuji, T., J. Appl. Phys. 110, 094503 (2011).CrossRefGoogle Scholar
Dubinov, A.A., Aleshkin, V.Y., Ryzhii, M., Otsuji, T., Ryzhii, V., Appl. Phys. Express 2, 092301 (2009).CrossRefGoogle Scholar
Ryzhii, V., Ryzhii, M., Satou, A., Otsuji, T., Dubinov, A.A., Aleshkin, V.Y., J. Appl. Phys. 106, 084507 (2009).CrossRefGoogle Scholar
Ryzhii, V., Dubinov, A., Otsuji, T., Mitin, V., Shur, M.S., J. Appl. Phys. 107, 054505 (2010).CrossRefGoogle Scholar
de Heer, W.A., Berger, C., Wu, X., First, P.N., Conrad, E.H., Li, X., Li, T., Sprinkle, M., Hass, J., Sadowski, M.L., Potemski, M., Martinez, G.D., Solid State Commun. 143, 92 (2007).CrossRefGoogle Scholar
Suemitsu, M., Miyamoto, Y., Handa, H., Konno, A., J. Surf. Sci. Nanotechnol. 7, 311 (2009).CrossRefGoogle Scholar
Suemitsu, M., Fukidome, H., J. Phys. D 43, 374012 (2010).CrossRefGoogle Scholar
Fukidome, H., Takahashi, R., Abe, S., Imaizumi, K., Handa, H., Kang, H.-C., Karasawa, H., Suemitsu, T., Otsuji, T., Enta, Y., Yoshigoe, A., Teraoka, Y., Kotsugi, M., Ohkouchi, T., Kinoshita, T., Suemitsu, M., J. Mater. Chem. 21, 17242 (2011).CrossRefGoogle Scholar
Fukidome, H., Abe, S., Takahashi, R., Imaizumi, K., Inomata, S., Handa, H., Saito, E., Enta, Y., Yoshigoe, A., Teraoka, Y., Kotsugi, M., Ohkouchi, T., Kinoshita, T., Ito, S., Suemitsu, M., Appl. Phys. Express 4, 115104 (2011).CrossRefGoogle Scholar
Suzuura, H., Ando, T., J. Phys. Soc. Jpn. 77, 044703 (2008).CrossRefGoogle Scholar
Maultzsch, J., Phys. Rev. B 70, 155403 (2004).CrossRefGoogle Scholar
Dawlaty, J.M., Shivaraman, S., Chandrashekhar, M., Rana, F., Spencer, M.G., Appl. Phys. Lett. 92, 042116 (2008).CrossRefGoogle Scholar
George, P.A., Strait, J., Dawlaty, J., Shivaraman, S., Chandrashekhar, M., Rana, F., Spencer, M.G., Nano Lett. 8, 4248 (2008).CrossRefGoogle Scholar
Breusing, M., Ropers, C., Elsaesser, T., Phys. Rev. Lett. 102, 086809 (2009).CrossRefGoogle Scholar
Rana, F., George, P.A., Strait, J.H., Dawlaty, J., Shivaraman, S., Chandrashekhar, M., Spencer, M.G., Phys. Rev. B 79, 115447 (2009).CrossRefGoogle Scholar
Satou, A., Otsuji, T., Ryzhii, V., Jpn. J. Appl. Phys. 50, 070116 (2011).CrossRefGoogle Scholar
Satou, A., Boubanga Tombet, S.A., Otsuji, T., Ryzhii, V., paper presented at the International Workshop on Optical Terahertz Science and Technology (sponsored by the Institute for Terahertz Science and Technology, Santa Barbara, CA), Santa Barbara, CA, 13–17 March 2011, paper TuA3.Google Scholar
Otsuji, T., Boubanga-Tombet, S.A., Chan, S., Satou, A., Ryzhii, V., Proc. SPIE 8023, 802304 (2011).CrossRefGoogle Scholar
Boubanga-Tombet, S., Chan, S., Watanabe, T., Satou, A., Ryzhii, V., Otsuji, T., Phys. Rev. B 85, 035443 (2012).CrossRefGoogle Scholar
Karasawa, H., Komori, T., Watanabe, T., Satou, A., Fukidome, H., Suemitsu, M., Ryzhii, V., Otsuji, T., J. Infrared Millimeter Terahertz Waves 32, 655 (2011).CrossRefGoogle Scholar
Williams, B.S., Kumar, S., Hu, Q., Reno, J.L., Opt. Lett. 30, 2909 (2005).CrossRefGoogle Scholar
Ryzhii, V., Ryzhii, M., Otsuji, T., Appl. Phys. Express 1, 013001 (2008).CrossRefGoogle Scholar
Ryzhii, V., Ryzhii, M., Mitin, V., Satou, A., Otsuji, T., Jpn. J. Appl. Phys. 50, 094001 (2011).CrossRefGoogle Scholar
Ryzhii, V., Satou, A., Otsuji, T., J. Appl. Phys. 101, 024509 (2007).CrossRefGoogle Scholar
Popov, V.V., Yu Bagaeva, T., Otsuji, T., Ryzhii, V., Phys. Rev. B 81, 073404 (2010).CrossRefGoogle Scholar
Fukushima, T., Chan, S., Boubanga-Tombet, S., Ryzhii, V., Popov, V., Otsuji, T., paper presented at the QNN: International Workshop on Quantum Nanostructure & Nanoelectronics, Tokyo, Japan, 3–4 October 2011; Paper ID P-24.Google Scholar
Ju, L., Geng, B., Horng, Jason, Girit, C., Martin, M., Hao, Z., Bechtel, H.A., Liang, X., Zettl, A., Ron Shen, Y., Wang, F., Nat. Nanotechnol. 6, 630 (2011).CrossRefGoogle Scholar
Rana, F., Nat. Nanotechnol. 6, 611 (2011).CrossRefGoogle Scholar
Yu. Nikitin, A., Guinea, F., Garcia-Vidal, F.J., Martin-Moreno, L., Phys. Rev. B 85, 081405(R) (2012).CrossRefGoogle Scholar
Dubinov, A.A., Aleshkin, Y.V., Mitin, V., Otsuji, T., Ryzhii, V., J. Phys.: Condens. Matter 23, 145302 (2011).Google Scholar
Takatsuka, Y., Sano, E., Ryzhii, V., Otsuji, T., Jpn. J. Appl. Phys. 50, 070118 (2011).CrossRefGoogle Scholar
Rana, F., George, P.A., Strait, J.H., Dawlaty, J., Shivaraman, S., Chandrashekhar, M., Spencer, M.G., Phys. Rev. B 79, 115447 (2009).CrossRefGoogle Scholar
Rana, F., IEEE Trans. Nanotechnol. 7, 91 (2008).Google Scholar
Foster, M.S., Aleiner, I.L., Phys. Rev. B 79, 085415 (2009).CrossRefGoogle Scholar
Strait, J.H., Wang, H., Shivaraman, S., Shields, V., Spencer, M., Rana, F., Nano Lett. 11, 4902 (2011).CrossRefGoogle Scholar
Winzer, T., Knorr, A., Malic, E., Nano Lett. 10, 4839 (2010).CrossRefGoogle Scholar
Li, T., Luo, L., Hupalo, M., Zhang, J., Tringides, M.C., Schmalian, J., Wang, J., Phys. Rev. Lett. 108, 167401 (2012).CrossRefGoogle Scholar
Prechtel, L., Song, L., Schuh, D., Ajayan, P., Wegscheider, W., Holleitner, A.W., Nat. Commun. 3, 646 (2012).CrossRefGoogle Scholar
Schwierz, F., Nat. Nanotechnol. 5, 487 (2010).CrossRefGoogle Scholar
Wu, Y.Q., Farmer, D.B., Valdes-Garcia, A., Zhu, W.J., Jenkins, K.A., Dimitrakopoulos, C., Avouris, P., Lin, Y.-M., IEEE Int. Electron Dev. Meet. 23.8 (2011).Google Scholar
Mueller, T., Xia, F., Avouris, P., Nat. Photon. 4, 297 (2010).CrossRefGoogle Scholar
Ryzhii, V., Ryabova, N., Ryzhii, M., Varyshnikov, N.V., Karasik, V.E., Mitin, V., Otsuji, T., Opto-Electron. Rev. 20, 15 (2012).CrossRefGoogle Scholar
Mikhailov, S.A., Ziegler, K., J. Phys.: Condens. Matter 20, 384204 (2008).Google Scholar
Mikhailov, S.A., Europhys. Lett. 79, 27002 (2007).CrossRefGoogle Scholar
Sensale-Rodriguez, B., Fang, T., Yan, R., Kelly, M.M., Jena, D., Liu, L., Xing, H.G., Appl. Phys. Lett. 99, 113104 (2011).CrossRefGoogle Scholar
Sensale-Rodriguez, B., Yan, R., Kelly, M.M., Fang, T., Tahy, K., Hwang, W.S., Jena, D., Liu, L., Xing, H.G., Nat. Commun. 3, 780 (2012).CrossRefGoogle Scholar