Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-07T18:17:33.744Z Has data issue: false hasContentIssue false

Integrated phase-change photonic devices and systems

Published online by Cambridge University Press:  05 September 2019

C. David Wright
Affiliation:
Department of Engineering, University of Exeter, UK; david.wright@exeter.ac.uk
Harish Bhaskaran
Affiliation:
Department of Materials, University of Oxford, UK; harish.bhaskaran@materials.ox.ac.uk
Wolfram H.P. Pernice
Affiliation:
Department of Physics, University of Münster, Germany; wolfram.pernice@uni-muenster.de
Get access

Abstract

Driven by the rapid rise of silicon photonics, optical signaling is moving from the realm of long-distance communications to chip-to-chip, and even on-chip domains. If on-chip signaling becomes optical, we should consider what more we might do with light than just communicate. We might, for example, set goals for the storing and processing of information directly in the optical domain. Doing this might enable us to supplement, or even surpass, the performance of electronic processors, by exploiting the ultrahigh bandwidth and wavelength division multiplexing capabilities offered by optics. In this article, we show how, by using an integrated photonics platform that embeds chalcogenide phase-change materials into standard silicon photonics circuits, we can achieve some of these goals. Specifically, we show that a phase-change integrated photonics platform can deliver binary and multilevel memory, arithmetic and logic processing, as well as synaptic and neuronal mimics for use in neuromorphic, or brain-like, computing—all working directly in the optical domain.

Type
Phase-Change Materials in Electronics and Photonics
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bogaerts, W., De Heyn, P., Van Vaerenbergh, T., De Vos, K., Kumar Selvaraja, S., Claes, T., Dumon, P., Bienstman, P., Van Thourhout, D., Baets, R., Laser Photon. Rev. 6, 47 (2012).CrossRefGoogle Scholar
Sun, C., Wade, M.T., Lee, Y., Orcutt, J.S., Alloatti, L., Georgas, M.S., Waterman, A.S., Shainline, J.M., Avizienis, R.R., Lin, S., Moss, B.R., Kumar, R., Pavanello, F., Atabaki, A.H., Cook, H.M., Ou, A.J., Leu, J.C., Chen, Y.-H., Asanović, K., Ram, R.J., Popović, M.A., Stojanović, V.M., Nature 528, 534 (2015).CrossRefGoogle Scholar
Nozaki, K., Shinya, A., Matsuo, S., Suzaki, Y., Segawa, T., Sato, T., Kawaguchi, Y., Takahashi, R., Notomi, M., Nat. Photonics 6, 248 (2012).CrossRefGoogle Scholar
Kuramochi, E., Nozaki, K., Shinya, A., Takeda, K., Sato, T., Matsuo, S., Taniyama, H., Sumikura, H., Notomi, M., Nat. Photonics 8, 474 (2014).CrossRefGoogle Scholar
Alexoudi, T., Fitsios, D., Bazin, A., Monnier, P., Raj, R., Miliou, A., Kanellos, G.T., Pleros, N., Raineri, F., IEEE J. Sel. Top. Quantum Electron. 22, 295 (2016).CrossRefGoogle Scholar
Redaelli, A., Ed., Phase Change Memory: Device Physics, Reliability and Applications (Springer International Publishing AG, New York, 2018).CrossRefGoogle Scholar
Ríos, C., Hosseini, P., Wright, C.D., Bhaskaran, H., Pernice, W.H.P., Adv. Mater. 26, 1372 (2014).CrossRefGoogle Scholar
Ríos, C., Stegmaier, M., Hosseini, P., Wang, D., Scherer, T., Wright, C.D., Bhaskaran, H., Pernice, W.H.P., Nat. Photonics 9, 725 (2015).CrossRefGoogle Scholar
Shportko, K., Kremers, S., Woda, M., Lencer, D., Robertson, J., Wuttig, M.. Nat. Mater. 7, 653 (2008).CrossRefGoogle Scholar
Pernice, W.H.P., Bhaskaran, H., App. Phys. Lett. 101, 171101 (2012)CrossRefGoogle Scholar
Gholipour, B., Zhang, J., MacDonald, K.F., Hewak, D.W., Zheludev, N.I., Adv. Mater. 25, 3050 (2013).CrossRefGoogle Scholar
Rude, M., Pello, J., Simpson, R.E., Osmond, J., Roelkens, G., van der Tol, J.J.G.M., Pruneri, V., Appl. Phys. Lett. 103, 141119 (2013).CrossRefGoogle Scholar
de Galarreta, C.R., Alexeev, A.M., Au, Y.-Y., Lopez-Garcia, M., Klemm, M., Cryan, M., Bertolotti, J., Wright, C.D., Adv. Funct. Mater. 28, 1704993 (2018).CrossRefGoogle Scholar
Li, X., Youngblood, N., Ríos, C., Cheng, Z., Wright, C.D., Pernice, W.H.P., Bhaskaran, H., Optica 6, 1 (2019).CrossRefGoogle Scholar
Feldmann, J., Stegmaier, M., Gruhler, N., Ríos, C., Bhaskaran, H., Wright, C.D., Pernice, W.H.P., Nat. Commun. 8, 1256 (2017).CrossRefGoogle Scholar
Ríos, C., Youngblood, N., Cheng, Z., Le Gallo, M., Pernice, W.H.P., Wright, C.D., Sebastian, A., Bhaskaran, H., Sci. Adv. 5, 5759 (2019).CrossRefGoogle Scholar
Karpov, I.V., Mitra, M., Kau, D., Spadini, G., Kryukov, Y.A., Karpov, V.G., J. Appl. Phys. 102, 124503 (2007).CrossRefGoogle Scholar
Fantini, P., Brazzelli, S., Cazzini, E., Mani, A., Appl. Phys. Lett. 100, 013505 (2012).CrossRefGoogle Scholar
Cheng, Z., Ríos, C., Youngblood, N., Wright, C.D., Pernice, W.H.P., Bhaskaran, H., Adv. Mater. 30, 1802435 (2018).CrossRefGoogle Scholar
Cheng, Z., Ríos, C., Pernice, W.H.P., Wright, C.D.. Bhaskaran, H., Sci. Adv. 3, e1700160 (2017).CrossRefGoogle Scholar
Chakraborty, I., Saha, G., Sengupta, A., Roy, K., Sci. Rep. 8, 12980 (2018).CrossRefGoogle Scholar
Feldmann, J., Youngblood, N., Wright, C.D., Bhaskaran, H., Pernice, W.H.P., Nature 569, 208 (2019).CrossRefGoogle Scholar
Stegmaier, M., Ríos, C., Bhaskaran, H., Wright, C.D., Pernice, W.H.P., Adv. Opt. Mater. 5, 1600346 (2017).CrossRefGoogle Scholar
Wu, C., Yu, H., Li, H., Zhang, X., Takeuchi, I., Li, M., ACS Photonics 6, 87 (2019).CrossRefGoogle Scholar
Von Keitz, J., Feldmann, J., Gruhler, N., Ríos, C., Wright, C.D., Bhaskaran, H., Pernice, W.H.P., ACS Photonics 5, 4644 (2018).CrossRefGoogle Scholar
Farmakidis, N., Youngblood, N., Li, X., Tan, J., Swett, J.L., Cheng, Z., Wright, C.D., Pernice, W.H.P., Bhaskaran, H., Sci. Adv. (forthcoming).Google Scholar
Xiong, F., Liao, A.D., Estrada, D., Pop, E., Science 332, 568 (2011).CrossRefGoogle Scholar
Loke, D., Lee, T.H., Wang, W.J., Shi, L.P., Zhao, R., Yeo, Y.C., Chong, T.C., Elliott, S.R., Science 336, 1566 (2012).CrossRefGoogle Scholar
Siegel, J., Afonso, C.N., Solis, J., Appl. Phys. Lett. 75, 3102 (1999).CrossRefGoogle Scholar
Kim, W.W., BrightSky, M., Masuda, T., Sosa, N., Kim, S., Bruce, R., Carta, F., Fraczak, G., Cheng, H.Y., Ray, A., Zhu, Y., Lung, H.L., Suu, K., Lam, C., IEDM Tech. Dig. 4.2.14.2.4 (2016).Google Scholar
Salinga, M., Kersting, B., Ronneberger, I., Jonnalagadda, V.P., Vu, X.T., Le Gallo, M., Giannopoulos, I., Cojocaru-Mirédin, O., Mazzarello, R., Sebastian, A., Nat. Mater. 17, 681 (2018).CrossRefGoogle Scholar
Zhang, W., Ma, E., Nat. Mater. 17, 654 (2018).CrossRefGoogle Scholar