Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-01T08:01:58.526Z Has data issue: false hasContentIssue false

Ionic liquids as safe electrolyte components for Li-metal and Li-ion batteries

Published online by Cambridge University Press:  15 July 2013

Maria Assunta Navarra*
Affiliation:
Sapienza University of Rome;mariassunta.navarra@uniroma1.it
Get access

Abstract

This article reports the search for nonflammable, stable electrolytes based on ionic liquid (IL) compounds, able to effectively improve the needed safety and reliability of lithium batteries. The most significant results are reviewed with the aim of elucidating critical aspects governing the properties of IL electrolytes, including (1) transport properties affecting ionic conductivity and the cycling rate of battery systems, (2) electrochemical/chemical stability toward most conventional electrode materials, and (3) thermal properties determining the range of applicability. Both liquid and polymer electrolytes, adopting ILs as the main component or as an additive to standard electrolyte solutions, are considered. Very promising results, in terms of battery prototype performances in scaled-up configurations, demonstrate the validity of the use of ILs for practical applications. Even though further improvements are necessary, particularly at high current density operations in both lithium-metal and lithium-ion systems, the realization of safer, high-performance batteries based on IL electrolytes is certainly possible. It can be concluded that ILs represent a viable solution to disappointing compromises between energy density and acceptable safety features in lithium batteries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sakaebe, H., Matsumoto, H., Electrochem. Commun. 5, 594 (2003).CrossRefGoogle Scholar
Dollé, M., Sannier, L., Beaudoin, B., Trentin, M., Tarascon, J.-M., Electrochem. Solid-State Lett. 5, A286 (2002)CrossRefGoogle Scholar
Welton, T., Chem. Rev. 99 2071 (1999).CrossRefGoogle Scholar
MacFarlane, D.R., Huang, J., Forsyth, M., Nature 402, 792 (1999).CrossRefGoogle Scholar
Scrosati, B., Garche, J., J. Power Sources 195, 2419 (2010).CrossRefGoogle Scholar
van Schalkwijk, W, Scrosati, B., Advances in Lithium-Ion Batteries (Kluwer Academic/Plenum, Boston, 2004).Google Scholar
Sakaebe, H., Matsumoto, H., Tatsumi, K., Electrochim. Acta 53, 1048 (2007).CrossRefGoogle Scholar
Wang, Y., Zaghib, K., Guerfi, A., Bazito, F.F.C., Torresi, R.M., Dahn, J.R., Electrochim. Acta 52, 6346 (2007).CrossRefGoogle Scholar
Guerfi, A., Dontigny, M., Charest, P., Petitclerc, M., Lagacé, M., Vijh, A., Zaghib, K., J. Power Sources 195, 845 (2010).CrossRefGoogle Scholar
Lane, G.H., Best, A.S., MacFarlane, D.R., Forsyth, M., Bayley, P.M., Hollenkamp, A.F., Electrochim. Acta 55, 8947 (2010).CrossRefGoogle Scholar
Larush, L., Borgel, V., Markevich, E., Haik, O., Zinigrad, E., Aurbach, D., Semrau, G., Schmidt, M., J. Power Sources 189, 217 (2009).CrossRefGoogle Scholar
Fuller, J., Breda, A.C., Carlin, R.T., J. Electrochem. Soc. 144, L67 (1997).CrossRefGoogle Scholar
Megahed, S., Scrosati, B., Interface 4, 34 (1995).Google Scholar
Sutto, T.E., J. Electrochem. Soc. 154, P101 (2007).CrossRefGoogle Scholar
Fernicola, A., Weise, F.C., Greenbaum, S.G., Kagimoto, J., Scrosati, B., Soleto, A., J. Electrochem. Soc. 156, A514 (2009).CrossRefGoogle Scholar
Zhu, C., Cheng, H., Yang, Y., J. Electrochem. Soc. 155, A569 (2008).CrossRefGoogle Scholar
MacFarlane, D.R., Sun, J., Forsyth, M., Meakin, P., Amini, N., J. Phys. Chem. B 103, 4164 (1999).CrossRefGoogle Scholar
Appetecchi, G.B., Montanino, M., Zane, D., Carewska, M., Alessandrini, F., Passerini, S., Electrochim. Acta 54, 1325 (2009).CrossRefGoogle Scholar
Zhou, Q., Henderson, W.A., Appetecchi, G.B., Montanino, M., Passerini, S., J. Phys. Chem. B 112, 13580 (2008).Google Scholar
Paillard, E., Zhou, Q., Henderson, W.A., Appetecchi, G.B., Montanino, M., Passerini, S., J. Electrochem. Soc. 156, A891 (2009).CrossRefGoogle Scholar
Kim, G.-T., Appetecchi, G.B., Montanino, M., Alessandrini, F., Passerini, S., ECS Trans. 25, 127 (2010).CrossRefGoogle Scholar
Appetecchi, G.B., Montanino, M., Balducci, A., Lux, S.F., Winter, M., Passerini, S., J. Power Sources 192, 599 (2009).CrossRefGoogle Scholar
Lux, S.F., Schmuck, M., Appetecchi, G.B., Passerini, S., Winter, M., Balducci, A., J. Power Sources 192 606 (2009).CrossRefGoogle Scholar
Guerfi, A., Duchesne, S., Kobayashi, Y., Vijh, A., Zaghib, K., J. Power Sources 175, 866 (2008).CrossRefGoogle Scholar
Sugimoto, T., Atsumi, Y., Kikuta, M., Ishiko, E., Kono, M., Ishikawa, M., J. Power Sources 189, 802 (2009).CrossRefGoogle Scholar
Matsumoto, H., Sakaebe, H., Tatsumi, K., Kikuta, M., Ishiko, E., Kono, M., J. Power Sources 160, 1308 (2006).CrossRefGoogle Scholar
Howlett, P.C., Izgorodina, E.I., Forsyth, M., MacFarlane, D.R., Z. Phys. Chem. 220, 1483 (2006).CrossRefGoogle Scholar
Randstroem, S., Appetecchi, G.B., Lagergren, C., Moreno, A., Passerini, S., Electrochim. Acta 53, 1837 (2007).CrossRefGoogle Scholar
Randstroem, S., Montanino, M., Appetecchi, G.B., Lagergren, C., Moreno, A., Passerini, S., Electrochim. Acta 53, 6397 (2008).CrossRefGoogle Scholar
Holzapfel, M., Jost, C., Novak, P., Chem. Commun. 10, 2098 (2004).CrossRefGoogle Scholar
Henderson, W.A., Passerini, S., Chem. Mater. 16, 2881 (2004).CrossRefGoogle Scholar
Ishikawa, M., Sugimoto, T., Kikuta, M., Ishiko, E., Kono, M., J. Power Sources 162, 658 (2006).CrossRefGoogle Scholar
Kim, G.-T., Jeong, S.S., Xue, M.-Z., Balducci, A., Winter, M., Passerini, S., Alessandrini, F., Appetecchi, G.B., J. Power Sources 199, 239 (2012).CrossRefGoogle Scholar
Bayley, P.M., Best, A.S., MacFarlane, D.R., Forsyth, M., ChemPhysChem 12, 823 (2011).CrossRefGoogle Scholar
Fernicola, A., Croce, F., Scrosati, B., Watanabe, T., Ohno, H., J. Power Sources 174, 342 (2007).CrossRefGoogle Scholar
Hassoun, J., Fernicola, A., Navarra, M.A., Panero, S., Scrosati, B., J. Power Sources 195, 574 (2010).CrossRefGoogle Scholar
Martinelli, A., Matic, A., Jacobsson, P., Borjesson, L., Fernicola, A., Scrosati, B., J. Phys. Chem. B 113, 11247 (2009).CrossRefGoogle Scholar
Fraser, K.J., Izgorodina, E.I., Forsyth, M., Scott, J.L., MacFarlane, D.R., Chem. Commun. 37, 3817 (2007).CrossRefGoogle Scholar
Hardwick, L.J., Holzapfel, M., Wokaun, A., Novak, P., J. Raman Spectrosc. 38, 110 (2007).CrossRefGoogle Scholar
Choi, J.-A., Eo, S.-M., MacFarlane, D.R., Forsyth, M., Cha, E., Kim, D.-W., J. Power Sources 178, 832 (2008).CrossRefGoogle Scholar
Nama, D., Kumar, P.G.A., Pregosin, P.S., Geldbach, T.J., Dyson, P.J., Inorg. Chim. Acta 359, 1907 (2006).CrossRefGoogle Scholar
Bayley, P.M., Lane, G.H., Rocher, N.M., Clare, B.R., Best, A.S., MacFarlane, D.R., Forsyth, M., Phys. Chem. Chem. Phys. 11, 7202 (2009).CrossRefGoogle Scholar
Lewandowski, A., Swiderska-Mocek, A., J. Power Sources 194, 502 (2009).CrossRefGoogle Scholar
Damen, L., Lazzari, M., Mastragostino, M., J. Power Sources 196, 8692 (2011).CrossRefGoogle Scholar
Lombardo, L., Brutti, S., Navarra, M.A., Panero, S., Reale, P., J. Power Sources 227, 8 (2013).CrossRefGoogle Scholar
Tsurumaki, A., Navarra, M.A., Panero, S., Scrosati, B., Ohno, H., J. Power Sources 233, 104 (2013).CrossRefGoogle Scholar
Arbizzani, C., Gabrielli, G., Mastragostino, M., J. Power Sources 196, 4801 (2011).CrossRefGoogle Scholar
Xu, K., Ding, M.S., Zhang, S., Allen, J.L., Jow, T.R., J. Electrochem. Soc. 149, A622 (2002).CrossRefGoogle Scholar
Tarascon, J.M., Armand, M., Nature 414, 359 (2001).CrossRefGoogle Scholar
Shin, J.-H., Henderson, W.A., Passerini, S., Electrochem. Commun. 5, 1016 (2003).CrossRefGoogle Scholar
Shin, J.-H., Henderson, W.A., Passerini, S., Electrochem. Solid-State Lett. 8, A125 (2005).CrossRefGoogle Scholar
Shin, J.-H., Henderson, W.A., Appetecchi, G.B., Alessandrini, F., Passerini, S., Electrochim. Acta 50, 3859 (2005).CrossRefGoogle Scholar
Appetecchi, G.B., Kim, G.T., Montanino, M., Alessandrini, F., Passerini, S., J. Power Sources 196, 6703 (2011).CrossRefGoogle Scholar
Balducci, A., Jeong, S.S., Kim, G.T., Passerini, S., Winter, M., Schmuck, M., Appetecchi, G.B., Marcilla, R., Mecerreyes, D., Barsukov, V., Khomenko, V., Cantero, I., De Meatza, I., Holzapfel, M., Tran, N., J. Power Sources 196, 9719 (2011).CrossRefGoogle Scholar
Fuller, J., Breda, A.C., Carlin, R.T., J. Electroanal. Chem. 459, 29 (1998).CrossRefGoogle Scholar
Kim, K.-S., Park, S.Y., Choi, S., Lee, H., J. Power Sources 155, 385 (2006).CrossRefGoogle Scholar
Sirisopanaporn, C., Fernicola, A., Scrosati, B., J. Power Sources 186, 490 (2009).CrossRefGoogle Scholar
Ye, H., Huang, J., Xu, J.J., Khalfan, A., Greenbaum, S.G., J. Electrochem. Soc. 154, A1048 (2007).CrossRefGoogle Scholar
Sivakkumar, S.R., MacFarlane, D.R., Forsyth, M., Kim, D.-W., J. Electrochem. Soc. 154, A834 (2007).CrossRefGoogle Scholar
Navarra, M.A., Manzi, J., Lombardo, L., Panero, S., Scrosati, B., ChemSusChem 4, 125 (2011).CrossRefGoogle Scholar