Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T20:25:22.377Z Has data issue: false hasContentIssue false

Microtubular solid-oxide fuel cells for low-temperature operation

Published online by Cambridge University Press:  10 September 2014

Toshio Suzuki
Affiliation:
Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology, Japan; toshio.suzuki@aist.go.jp
Toshiaki Yamaguchi
Affiliation:
National Institute of Advanced Industrial Science and Technology, Japan; tosiro-yamaguchi@aist.go.jp
Hirofumi Sumi
Affiliation:
National Institute of Advanced Industrial Science and Technology, Japan; h-sumi@aist.go.jp
Koichi Hamamoto
Affiliation:
National Institute of Advanced Industrial Science and Technology, Japan; k-hamamoto@aist.go.jp
Yoshinobu Fujishiro
Affiliation:
Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology, Japan; y-fujishiro@aist.go.jp
Get access

Abstract

Electrochemical ceramic cells such as solid-oxide fuel cells (SOFCs) are typically operated at 700–800°C in order to realize practical performances that, in turn, result in higher efficiencies compared to that of other types of electrochemical cells. High-temperature operation, on the other hand, leads to increased system cost and limits application. Thus, lowering the operating temperature is expected to solve such problems. This article shows the effectiveness of redesigning the cell structure for reduction of the operating temperature to 650°C or lower using conventional SOFC materials. A microtubular cell design is found to be one means of lowering the operating temperature of SOFCs. Such developments in fabrication technology are key to realizing high-performance cells with a thin electrolyte and controlled electrode microstructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Minh, N.Q., J. Am. Ceram. Soc. 76, 563 (1993).Google Scholar
Yamamoto, O., Electrochim. Acta 45, 2423 (2000).Google Scholar
Singhal, S.C., Solid State Ionics 152153, 405 (2002).Google Scholar
Steele, B.C.H., Heinzel, A., Nature 414, 345 (2001).CrossRefGoogle Scholar
Weber, A., Ivers-Tiffee, E., J. Power Sources 110, 186 (2002).Google Scholar
Haile, S.M., Acta Mater. 51, 5981 (2003).Google Scholar
Minh, N.Q., Solid State Ionics 174, 271 (2004).Google Scholar
Yokokawa, H., Sakai, N., Horita, T., Yamaji, K., Brito, M.E., MRS Bull. 30, 591 (2005).Google Scholar
Mukhopadhyay, M., Mukhopadhyay, J., Sharma, A.D., Basu, R.N., Int. J. Appl. Ceram. Technol. 9, 999 (2012).Google Scholar
Tsuchiya, M., Lai, B.K., Ramanathan, S., Nat. Nanotechnol. 6, 282 (2011).Google Scholar
Han, F., Mücke, R., Gestel, T.V., Leonide, A., Menzler, N.H., Buchkremer, H.P., Stöver, D., J. Power Sources 218, 157 (2012).Google Scholar
Yan, J.W., Matsumoto, H., Enoki, M., Ishihara, T., Electrochem. Solid-State Lett. 8, A389 (2005).Google Scholar
Wachsman, E.D., Solid State Ionics 152, 657 (2002).CrossRefGoogle Scholar
Shao, Z.P., Haile, S.M., Nature 431, 170 (2004).Google Scholar
Tao, S.W., Irvine, J.T.S., Nat. Mater. 2, 320 (2003).Google Scholar
Eguchi, K., Setoguchi, T., Inoue, T., Arai, H., Solid State Ionics 52, 165 (1992).CrossRefGoogle Scholar
Hibino, T., Hashimoto, A., Asano, K., Yano, M., Suzuki, M., Sano, M., Electrochem. Solid-Sate Lett. 5, A242 (2002).Google Scholar
Hibino, T., Hashimoto, A., Suzuki, M., Sano, M., J. Electrochem. Soc. 149, A1503 (2002).CrossRefGoogle Scholar
Suzuki, T., Funahashi, Y., Yamaguchi, T., Fujishiro, Y., Awano, M., J. Fuel Cell Sci. Technol. 5, 031201 (2008).Google Scholar
Yamaguchi, T., Shimizu, S., Suzuki, T., Fujishiro, Y., Awano, M., J. Memb. Sci. 300, 45 (2007).CrossRefGoogle Scholar
Suzuki, T., Yamaguchi, T., Hamamoto, K., Sumi, H., Fujishiro, Y., RSC Adv. 1, 911 (2011).Google Scholar
Suzuki, T., Liang, B., Yamaguchi, T., Hamamoto, K., Fujishiro, Y., Electrochem. Commun. 13, 719 (2011).Google Scholar
Suzuki, T., Yamaguchi, T., Fujishiro, Y., Awano, M., J. Power Sources 163, 737 (2007).Google Scholar
Suzuki, T., Liang, B., Yamaguchi, T., Hamamoto, K., Sumi, H., Fujishiro, Y., Sammes, N., Int. J. Appl. Ceram. Technol. (2014), accepted for publication.Google Scholar
Sumi, H., Yamaguchi, T., Hamamoto, K., Suzuki, T., Fujishiro, Y., J. Power Sources 220, 74 (2012).Google Scholar
Yamaguchi, T., Sumi, H., Hamamoto, K., Suzuki, T., Fujishiro, Y., ECS Trans. 57, 3249 (2013).Google Scholar
Sammes, N.M., Du, Y., Bove, R., J. Power Sources 145, 428 (2005).CrossRefGoogle Scholar
Kendall, K., Palin, M., J. Power Sources 71, 268 (1998).Google Scholar
Yashiro, K., Yamada, N., Kawada, T., Hong, J., Kaimai, A., Nigara, Y., Mizusaki, J., Electrochemistry 70, 958 (2002).CrossRefGoogle Scholar