Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-07T18:17:00.008Z Has data issue: false hasContentIssue false

Modeling twinning, detwinning, and dynamic recrystallization of magnesium alloys

Published online by Cambridge University Press:  06 November 2019

Huamiao Wang
Affiliation:
School of Mechanical Engineering, Shanghai Jiao Tong University, China; wanghm02@sjtu.edu.cn
Shuangming Li
Affiliation:
Northwestern Polytechnical University, China; lsm@nwpu.edu.cn
Dayong Li
Affiliation:
School of Mechanical Engineering, Shanghai Jiao Tong University, China; dyli@sjtu.edu.cn
Gwénaëlle Proust
Affiliation:
School of Civil Engineering, The University of Sydney, Australia; gwenaelle.proust@sydney.edu.au
Yixiang Gan
Affiliation:
School of Civil Engineering, The University of Sydney, Australia; yixiang.gan@sydney.edu.au
Kun Yan
Affiliation:
The University of Manchester, UK; kunyan.callaghan@manchester.ac.uk
Ding Tang
Affiliation:
School of Mechanical Engineering, Shanghai Jiao Tong University, China; tangding@sjtu.edu.cn
Peidong Wu
Affiliation:
Department of Mechanical Engineering, McMaster University, Canada; peidong@mcmaster.ca
Yinghong Peng
Affiliation:
School of Materials Science and Engineering, and School of Mechanical Engineering, Shanghai Jiao Tong University, China; yhpeng@sjtu.edu.cn
Get access

Abstract

Magnesium alloys usually lack “operative deformation slip mechanisms” because of their hexagonal close-packed structure. Therefore, the mechanical behavior of magnesium alloys at different temperatures is dictated by other deformation mechanisms such as twinning, detwinning, secondary twinning, or dynamic recrystallization (DRX). Twinning and DRX can affect the development of grain size and orientation distribution, as well as the deformation behavior of magnesium alloys. The current understanding of the mechanisms and mechanics of these different deformation modes and their implementation in crystal plasticity-based modeling are highlighted in this article. Future directions in the development of constitutive models are also discussed.

Type
High-Temperature Materials for Structural Applications
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pollock, T.M., Science 328, 986 (2010).Google ScholarPubMed
Proust, G., Science 364, 30 (2019).CrossRefGoogle Scholar
Christian, J.W., Mahajan, S., Prog. Mater. Sci. 39, 1 (1995).CrossRefGoogle Scholar
Yu, Q., Jiang, Y., Wang, J., Scr. Mater. 96, 41 (2015).Google Scholar
Roberts, C.S., Magnesium and Its Alloys (Wiley, New York, 1960).Google Scholar
Lou, X.Y., Li, M., Boger, R.K., Agnew, S.R., Wagoner, R.H., Int. J. Plast. 23, 44 (2007).CrossRefGoogle Scholar
Yu, Q., Zhang, J.X., Jiang, Y.Y., Philos. Mag. Lett. 91, 757 (2011).CrossRefGoogle Scholar
Jain, A., Agnew, S.R., Mater. Sci. Eng. A 462, 29 (2007).CrossRefGoogle Scholar
Al-Samman, T., Li, X., Mater. Sci. Eng. A 527, 3450 (2010).Google Scholar
Tang, T., Zhou, G., Li, Z., Li, D., Peng, L., Peng, Y., Wu, P., Wang, H., Lee, M.G., Int. J. Plast. 116, 159 (2019).CrossRefGoogle Scholar
Al-Samman, T., Molodov, K.D., Molodov, D.A., Gottstein, G., Suwas, S., Acta Mater. 60, 537 (2012).CrossRefGoogle Scholar
Stanford, N., Callaghan, M.D., de Jong, B., Mater. Sci. Eng. A 565, 459 (2013).CrossRefGoogle Scholar
Liu, X., Jonas, J.J., Li, L.X., Zhu, B.W., Int. J. Plast. 27, 1916 (2013).Google Scholar
Asaro, R.J., Needleman, A., Acta Metall . 33, 923 (1985).CrossRefGoogle Scholar
Tomé, C.N., Lebensohn, R.A., Kocks, U.K., Acta Metall. Mater. 39, 2667 (1991).CrossRefGoogle Scholar
Dawson, P.R., MacEwen, S.R., Wu, P.D., Int. Mater. Rev. 48, 86 (2003).CrossRefGoogle Scholar
Taylor, G.I., J. Inst. Met. 62, 307 (1938).Google Scholar
Lebensohn, R.A., Tomé, C.N., Acta Metall. Mater. 41, 2611 (1993).Google Scholar
Wang, J., Hirth, J.P., Tomé, C.N., Acta Mater . 57, 5521 (2009).CrossRefGoogle Scholar
Wang, J., Beyerlein, I.J., Tomé, C.N., Int. J. Plast. 56, 156 (2014).Google Scholar
Beyerlein, I.J., Capolungo, L., Marshall, P.E., McCabe, R.J., Tomé, C.N., Philos. Mag. 90, 2161 (2010).CrossRefGoogle Scholar
Niezgoda, S.R., Kanjarla, A.K., Beyerlein, I.J., Tomé, C.N., Int. J. Plast. 56, 119 (2014).CrossRefGoogle Scholar
Van Houtte, P., Acta Metall. Mater. 26, 591 (1978).Google Scholar
Tomé, C.N., Maudlin, P.J., Lebensohn, R.A., Kaschner, G.C., Acta Mater . 49, 3085 (2001).CrossRefGoogle Scholar
Agnew, S.R., Duygulu, O., Int. J. Plast. 21, 1161 (2005).CrossRefGoogle Scholar
Wang, H., Raeisinia, B., Wu, P.D., Agnew, S.R., Tomé, C.N., Int. J. Solids Struct. 47, 2905 (2010).CrossRefGoogle Scholar
Kalidindi, S.R., J. Mech. Phys. Solids 46, 267 (1998).CrossRefGoogle Scholar
Proust, G., Tomé, C.N., Kaschner, G.C., Acta Mater . 55, 2137 (2007).CrossRefGoogle Scholar
Proust, G., Tomé, C.N., Jain, A., Agnew, S.R., Int. J. Plast. 25, 861 (2009).Google Scholar
Wu, P.D., Guo, X.Q., Qiao, H., Lloyd, D.J., Mater. Sci. Eng. A 625, 140 (2015).CrossRefGoogle Scholar
Qiao, H., Barnett, M.R., Wu, P.D., Int. J. Plast. 86, 70 (2016).CrossRefGoogle Scholar
Xin, R., Liu, Z., Sun, Y., Wang, H., Guo, C., Ren, W., Liu, Q., Int. J. Plast. (2019), doi:10.1016/j.ijplas.2019.07.018.Google Scholar
Wang, H., Wu, P.D., Tomé, C.N., Wang, J., Mater. Sci. Eng. A 555, 93 (2012).CrossRefGoogle Scholar
Wang, H., Wu, P.D., Wang, J., Tomé, C.N., Int. J. Plast. 49, 36 (2013).CrossRefGoogle Scholar
Guo, X.Q., Wu, W., Wu, P.D., Qiao, H., An, K., Liaw, P.K., Scr. Mater. 69, 319 (2013).CrossRefGoogle Scholar
Qiao, H., Agnew, S.R., Wu, P.D., Int. J. Plast. 65, 61 (2015).Google Scholar
Wang, H., Clausen, B., Capolungo, L., Beyerlein, I.J., Wang, J., Tomé, C.N., Int. J. Plast. 79, 275 (2016).CrossRefGoogle Scholar
Wang, H., Wu, P.D., Kurukuri, S., Worswick, M.J., Peng, Y., Tang, D., Li, D., Int. J. Plast. 107, 207 (2018).CrossRefGoogle Scholar
Ma, C., Wang, H., Hama, T., Guo, X., Mao, X., Wang, J., Wu, P.D., Int. J. Plast. 121, 261 (2019).CrossRefGoogle Scholar
Ma, Q., El Kadiri, H., Oppedal, A.L., Baird, J.C., Horstemeyer, M.F., Cherkaoui, M., Scr. Mater. 64, 813 (2011).CrossRefGoogle Scholar
Niknejad, S., Esmaeili, S., Zhou, N.Y., Acta Mater . 102, 1 (2016).CrossRefGoogle Scholar
Qiao, H., Guo, X.Q., Hong, S.G., Wu, P.D., J. Alloys Compd. 725, 96 (2017).CrossRefGoogle Scholar
Doherty, R.D., Prog. Mater. Sci. 42, 39 (1997).CrossRefGoogle Scholar
Sakai, T., Belyakov, A., Kaibyshev, R., Miura, H., Jonas, J.J., Prog. Mater. Sci. 60, 130 (2014).CrossRefGoogle Scholar
Park, C.H., Oh, C.-S., Kim, S., Mater. Sci. Eng. A 542, 127 (2012).CrossRefGoogle Scholar
Zhou, G., Li, Z., Li, D., Peng, Y., Wang, H., Wu, P.D., Mater. Sci. Eng. A 730, 438 (2018).CrossRefGoogle Scholar
Liu, Y., Li, N., Shao, S., Gong, M., Wang, J., McCabe, R.J., Jiang, Y., Tomé, C.N., Nat. Commun. 7, 11577 (2016).CrossRefGoogle Scholar