Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-07T18:20:56.578Z Has data issue: false hasContentIssue false

Multicomponent bulk metallic glasses with elevated-temperature resistance

Published online by Cambridge University Press:  06 November 2019

A. Inoue
Affiliation:
International Institute of Green Materials, Josai International University, Japan; inoue@jiu.ac.jp
F.L. Kong
Affiliation:
International Institute of Green Materials, Josai International University, Japan; kong@jiu.ac.jp
S.L. Zhu
Affiliation:
School of Materials Science and Engineering, Tianjin University, China; slzhu@tju.edu.cn
A.L. Greer
Affiliation:
Department of Materials Science & Metallurgy, University of Cambridge, UK; alg13@cam.ac.uk
Get access

Abstract

Metallic glasses have attractive properties, but since the glassy state is inherently metastable, they are not normally considered for applications at elevated temperatures. Yet, studies have shown that multicomponent and pseudo high-entropy (PHE) compositions can confer useful heat resistance. The formation, thermal stability, and mechanical and chemical properties of multicomponent Fe-(Cr, Mo)- and Zr-based bulk metallic glasses (BMGs) are reviewed to assess their potential as heat-resistant structural materials. The composition Fe43Cr16Mo16C15B10 is castable and fully glassy with rod diameters up to 2.7 mm. Glassy coatings of this material with low porosity, good mechanical properties, and good corrosion resistance can be produced by high-velocity spray coating. The compositions Zr55–65Al7.5–10(TM1,TM2)27.5–35 (TM1 = Fe, Co, Ni, TM2 = Cu, Pd, Ag, Au) yield PHE BMGs, in which a stable cluster-like glassy phase without crystalline precipitates is formed by annealing at temperatures well above the first calorimetric transformation. It is suggested that proliferation of alloy components is an effective method to synthesize metastable metallic materials that retain high strength at elevated temperatures.

Type
High-Temperature Materials for Structural Applications
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Inoue, A., Acta Mater . 48, 279 (2000).CrossRefGoogle Scholar
Johnson, W.L., MRS Bull . 24, 42 (1999).CrossRefGoogle Scholar
Greer, A.L., Science 267, 1947 (1995).CrossRefGoogle Scholar
Suryanarayana, C., Inoue, A., Bulk Metallic Glasses, 2nd ed. (CRC Press, Boca Raton, FL, 2017).Google Scholar
Yang, W.M., Liu, H.S., Liu, X.J., Chen, G.X., Dun, C.C., Zhao, Y.C., Man, Q.K., Chang, C.T., Shen, B.L., Inoue, A., Li, R.W., Jiang, J.Z., J. Appl. Phys. 116, 123512 (2014).CrossRefGoogle Scholar
Ma, L., Wang, L., Zhang, T., Inoue, A., Mater. Trans. 43, 277 (2002).CrossRefGoogle Scholar
Cantor, B., Chang, I.T.H., Knight, P., Vincent, A.J.B., Mater. Sci. Eng. A 375–377, 213 (2004).CrossRefGoogle Scholar
Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., Chang, S.Y., Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
Zhang, Y., Zhou, Y.J., Lin, J.P., Chen, G.L., Liaw, P.K., Adv. Eng. Mater. 10, 534 (2008).CrossRefGoogle Scholar
Murty, B.S., Yeh, J.W., Ranganathan, S., High-Entropy Alloys (Butterworth-Heinemann, Oxford, UK, 2014).Google Scholar
Inoue, A., Wang, Z., Louzguine-Luzgin, D.V., Han, Y., Kong, F.L., Shalaan, E., Al-Marzouki, F., J. Alloys Compd. 638, 197 (2015).CrossRefGoogle Scholar
Li, M.M., Inoue, A., Han, Y., Kong, F.L., Zhu, S.L., Shalaan, E., Al-Marzouki, F., J. Alloys Compd. 735, 1712 (2018).CrossRefGoogle Scholar
Guo, Y.N., Inoue, A., Han, Y., Kong, F.L., Feng, B., Zhu, S.L., Ikuhara, Y., J. Alloys Compd. 783, 545 (2019).CrossRefGoogle Scholar
Klement, W., Willens, R.H., Duwez, P., Nature 187, 869 (1960).CrossRefGoogle Scholar
Inoue, A., Masumoto, T., Arakawa, S., Iwadachi, T., Trans. Jpn. Inst. Met. 19, 303 (1978).CrossRefGoogle Scholar
Inoue, A., Masumoto, T., Arakawa, S., Iwadachi, T., in Rapidly Quenched Metals III, Cantor, B., Ed. (Metals Society, London, UK, 1978), p. 265.Google Scholar
Inoue, A., Arakawa, S., Masumoto, T., Trans. Jpn. Inst. Met. 19, 11 (1978).CrossRefGoogle Scholar
Inoue, A., Arnberg, L., Oguchi, M., Backmark, U., Bäckström, N., Masumoto, T., Mater. Sci. Eng. 95, 101 (1987).CrossRefGoogle Scholar
Inoue, A., Arnberg, L., Oguchi, M., Backmark, U., Backstrom, N., Masumoto, T., Trans. Iron Steel Inst. Jpn. 28, 7 (1988).CrossRefGoogle Scholar
Arnberg, L., Larsson, E., Savage, S., Inoue, A., Yamaguchi, S., Kikuchi, M., Mater. Sci. Eng. A 133, 288 (1991).CrossRefGoogle Scholar
Inoue, A., Shinohara, Y., Gook, J.S., Mater. Trans. JIM 36, 1427 (1995).CrossRefGoogle Scholar
Pang, S.J., Zhang, T., Asami, K., Inoue, A., Acta Mater . 50, 489 (2002).CrossRefGoogle Scholar
Pang, S., Zhang, T., Asami, K., Inoue, A., J. Mater. Res. 17, 701 (2002).CrossRefGoogle Scholar
Ponnambalam, V., Poon, S.J., Shiflet, G.J., J. Mater. Res. 19, 1320 (2004).CrossRefGoogle Scholar
Lu, Z.P., Liu, C.T., Thompson, J.R., Porter, W.D., Phys. Rev. Lett. 92, 245503 (2004).CrossRefGoogle Scholar
Amiya, K., Inoue, A., Rev. Adv. Mater. Sci. 18, 27 (2008).Google Scholar
Shen, J., Chen, Q., Sun, J., Fan, H., Wang, G., Appl. Phys. Lett. 86, 151907 (2005).CrossRefGoogle Scholar
Hirata, A., Hirotsu, Y., Amiya, K., Inoue, A., Phys. Rev. B 78, 144205 (2008).CrossRefGoogle Scholar
Louzguine-Luzgin, D.V., Bazlov, A.I., Ketov, S.V., Greer, A.L., Inoue, A., Acta Mater . 82, 396 (2015).CrossRefGoogle Scholar
Kim, H.G., Nakata, K., Tsumura, T., Sugiyama, M., Igarashi, T., Fukumoto, M., Kimura, H., Inoue, A., Mater. Sci. Forum 580–582, 467 (2008).CrossRefGoogle Scholar
Sugiyama, M., Igarashi, T., Okano, T., Kimura, H., Inoue, A., Mater. Jap. 46, 31 (2007).CrossRefGoogle Scholar
Igarashi, T., Therm. Spray. Techn. (Japan) 32, 3 (2012).Google Scholar
Igarashi, T., Nakashima, K., Ishikawa, T., Sugiyama, M., Fukumoto, M., Kimura, H., Makino, A., Inoue, A., J. Jpn. Soc. Powder Metall. 56, 683 (2009).CrossRefGoogle Scholar
Inoue, A., Zhang, T., Saida, J., Matsushita, M., Chen, M.W., Sakurai, T., Mater. Trans. JIM 40, 1181 (1999).CrossRefGoogle Scholar
Lee, J.K., Choi, G., Kim, D.H., Kim, W.T., Appl Phys Lett. 77, 978 (2000).CrossRefGoogle Scholar
Jiang, J.Z., Saksl, K., Rasmussen, H., Watanuki, T., Ishimatsu, N., Shimomara, O., Appl Phys Lett. 79, 1112 (2001).CrossRefGoogle Scholar
Inoue, A., Kong, F.L., Zhu, S.L., Al-Marzouki, F., J Alloys Compd . 707, 12 (2017).CrossRefGoogle Scholar