Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-14T06:17:32.249Z Has data issue: false hasContentIssue false

Nonvolatile Magnetoresistive Random-Access Memory Based on Magnetic Tunnel Junctions

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Magnetoresistive random-access memory (MRAM) is a new memory technology that is nearing commercialization. MRAM integrates a magnetic tunnel junction (MTJ) device with standard silicon-based microelectronics, resulting in a combination of qualities not found in other memory technologies. For example, MRAM is nonvolatile, has unlimited read and write endurance, and is capable of high-speed read and write operations. In this article, we will describe the fundamentals of an MTJ-based MRAM as well as recent important technology developments in the areas of magnetic materials and memory cell architecture. In addition, we will compare the present and future capabilities of MRAM to those of existing memory technologies such as static RAM and flash memory.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Miyazaki, T. and Tezuka, N.J. Magn. Magn. Mater. 139 (1995) p. L231.CrossRefGoogle Scholar
2Moodera, J.S.Kinder, L.R.Wong, T.M. and Meservey, R.Phys. Rev. Lett. 74 (1995) p. 3273.CrossRefGoogle Scholar
3Tehrani, S.Slaughter, J.M.DeHerrera, M.Engel, B.N.Rizzo, N.D.Salter, J.Durlam, M.Dave, R.W.Janesky, J. and Grynkewich, G.Proc. IEEE 91 (5) (2003) p. 703.CrossRefGoogle Scholar
4Savtchenko, L.Engel, B.N.Rizzo, N.D.DeHerrera, M.F. and Janesky, J.A. “Method of writing to scalable magnetoresistance random-access memory element,” U.S. Patent No. 6,545,906 (April 8, 2003).Google Scholar
5Durlam, M.Addie, D.Akerman, J.Butcher, B.Brown, P.Chan, J.DeHerrera, M.Engel, B.N.Feil, B.Grynkewich, G.Janesky, J.Johnson, M.Kyler, K.Molla, J.Martin, J.Nagel, K.Ren, J.Rizzo, N.D.Rodriguez, T.Savtchenko, L. and Salter, E.J.IEEE Int. Electron Devices Meeting 2003 (2003) p. 34.6.1; B.N. Engel, J. Akerman, B. Butcher, R.W. Dave, M. DeHerrera, M. Durlam, G. Grynkewich, J. Janesky, S.V. Pietambaram, N.D. Rizzo, J.M. Slaughter, K. Smith, J.J. Sun, and S. Tehrani, IEEE Trans. Mag. (2004) in press.Google Scholar
6Parkin, S.S.P., More, N., and Roche, K.P., Phys. Rev. Lett. 64 (1990) p. 2304.CrossRefGoogle Scholar
7Gallagher, W.J.Parkin, S.S.P.Lu, Y.Bian, X.P.Marley, A.Altman, R.A.Rishton, S.A.Roche, K.P.Jahnes, C.Shaw, T.M. and Xiao, G.J. Appl. Phys. 81 (1997) p. 3741.CrossRefGoogle Scholar
8Tehrani, S.Slaughter, J.M.Chen, E.Durlam, M.Shi, J. and DeHerrera, M.IEEE Trans. Mag. 35 (2000) p. 2814.CrossRefGoogle Scholar
9Johnson, M.IEEE Spectrum 37 (2) (2000) p. 33.CrossRefGoogle Scholar