Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T07:46:44.492Z Has data issue: false hasContentIssue false

Ovonic threshold switching selectors for three-dimensional stackable phase-change memory

Published online by Cambridge University Press:  05 September 2019

Min Zhu
Affiliation:
Shanghai Institute of Microsystem and Information Technology, China; minzhu@mail.sim.ac.cn
Kun Ren
Affiliation:
Shanghai Institute of Microsystem and Information Technology, and Hangzhou Dianzi University, China; kun.ren.nick@outlook.com
Zhitang Song
Affiliation:
Shanghai Institute of Microsystem and Information Technology, China; ztsong@mail.sim.ac.cn
Get access

Abstract

High-current switching performance of ovonic threshold switching (OTS) selectors have successfully enabled the commercialization of high-density three-dimensional (3D) stackable phase-change memory in Intel’s 3D Xpoint technology. This bridges the huge performance gap between dynamic random access memory (DRAM) and Flash. Similar to phase-change memory, OTS uses chalcogenide-based materials, but whereas phase-change memory reversibly switches between a high-resistance amorphous phase and a low-resistance crystalline phase, OTS freezes in the amorphous phase. In this article, we review recent developments in OTS materials and their performance in devices, especially current density and selectivity. Advantages and challenges of OTS devices in the integration with the phase-change memory are discussed. We introduce the evolution of theoretical models for explaining the OTS behavior, including thermal runaway, field-induced nucleation, and generation/recombination of charge carriers.

Type
Phase-Change Materials in Electronics and Photonics
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burr, G., Breitswisch, M.J., Franceschini, M., Garetto, D., Gopalakrishnan, K., Jackson, B., Kurdi, B., Lam, C., Lastras, L.A., Padilla, A., Rajendran, B., Raoux, S., Shenory, R.S., J. Vac. Sci. Technol. B 28, 223 (2010).CrossRefGoogle Scholar
Zhu, M., Ti-Sb-Te Phase Change Materials: Component Optimization, Mechanism and Applications (Springer Nature, Singapore, 2017).CrossRefGoogle Scholar
Zhang, W., Mazzarello, R., Wuttig, M., Ma, E., Nat. Rev. Mater. 4, 150 (2019).CrossRefGoogle Scholar
Burr, G.W., Kurdi, B.N., Scott, J.C., Lam, C.H., Gopalakrishnan, K., Shenoy, R.S., IBM J. Res. Dev. 52, 449 (2008).CrossRefGoogle Scholar
Freitas, R.F., Wicke, W.W., IBM J. Res. Dev. 52, 439 (2008).CrossRefGoogle Scholar
Zhu, M., Xia, M., Rao, F., Li, X., Wu, L, Ji, X., Lv, S., Song, Z., Feng, S., Sun, H., Zhang, S., Nat. Commun. 5, 4086 (2014).CrossRefGoogle Scholar
Salinga, M., Kersting, B., Ronneberger, I., Jonnalagadda, V.P., Vu, X.T., Gallo, M.L., Giannopoulos, I., Miredin, O.C., Mazzarello, R., Sebastian, A., Nat. Mater. 17, 681 (2018).CrossRefGoogle Scholar
Wuttig, M., Yamada, N., Nat. Mater. 6, 824 (2007).CrossRefGoogle Scholar
Shen, J., Lv, S., Chen, X., Li, T., Zhang, S., Song, Z., Zhu, M., ACS Appl. Mater. Interfaces 7, 7627 (2015).Google ScholarPubMed
Rao, F., Ding, K., Zhou, Y., Zheng, Y., Xia, M., Lv, S., Song, Z., Feng, S., Ronneberger, I., Mazzarello, R., Zhang, W., Ma, E., Science 358, 1423 (2017).CrossRefGoogle Scholar
Choe, J., “Intel 3D XPoint Memory Die Removed from Intel Optane PCM (Phase Change Memory),” TechInsights, http://www.techinsights.com/about-techinsights/overview/blog/intel-3D-xpoint-memorydie-removed-from-intel-optane-pcm (2017).Google Scholar
Burr, G.W., Shenoy, R.S., Virwani, K., Narayanan, P., Padilla, A., Kurdi, B., Hwang, H., J. Vac. Sci. Technol. B 32, 040802 (2014).CrossRefGoogle Scholar
Oh, J.H., Park, J.H., Lim, Y.S., Lim, H.S., Oh, Y.T., Kim, J.S., Shin, J.M., Park, J.H., Song, Y.J., Ryoo, K.C., Lim, D.W., Park, S.S., Kim, J.I., Kim, J.H., Yu, J., Yeung, F., Jeong, C.W., Kong, J.H., Kang, D.H., Koh, G.H., Jeong, G.T., Jeong, H.S., Kim, K., IEDM Tech. Dig. 1 (2006).Google Scholar
Servalli, G., IEDM Tech. Dig. 5.7.1 (2009).Google Scholar
Kau, D., Tang, S., Karpov, I.V., Dodge, R., Klehn, B., Kalb, J.A., Strand, J., Diaz, A., Leung, N., Wu, J., Lee, S., Langtry, T., Chang, K., Papagianni, C., Lee, J., Hirst, J., Erra, S., Flores, E., Righos, N., Castro, H., Spadini, G., IEDM Tech. Dig. 27.1.1 (2009).Google Scholar
Son, M., Lee, J., Park, J., Shin, J., Choi, G., Jung, S., Lee, W., Kim, S., Park, S., Hwang, H., IEEE Electron Device Lett . 32, 1579 (2011).CrossRefGoogle Scholar
Kund, M., Beitel, G., Pinnow, C., Röhr, T., Schumann, J., Symanczyk, R., Ufert, K., Müller, G., IEDM Tech. Dig. 754 (2005).Google Scholar
Jo, S.H., Kumar, T., Narayanan, S., Lu, W.D., Nazarian, H., IEDM Tech. Dig. 6.7.1 (2014).Google Scholar
Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N., Takao, M., J. Appl. Phys. 69, 2849 (1991).CrossRefGoogle Scholar
Xu, M., Cheng, Y.Q., Wang, L., Sheng, H.W., Meng, Y., Yang, W.G., Han, X.D., Ma, E., Proc. Natl. Acad. Sci. U.S.A. 109, E1055 (2012).CrossRefGoogle Scholar
Lee, S., Ko, D., Jung, Y., Agarwai, R., Appl. Phys. Lett. 89, 223116 (2006).CrossRefGoogle Scholar
Anbarasu, M., Wimmer, M., Bruns, G., Salinga, M., Wuttig, M., Appl. Phys. Lett. 100, 143505 (2012).CrossRefGoogle Scholar
Zhu, M., Mirédin, O.C., Mio, A.M., Keutgen, J., Küpers, M., Yu, Y., Cho, J.-Y., Dronskowski, R., Wuttig, M., Adv. Mater. 30, 1706735 (2018).CrossRefGoogle Scholar
Pries, J., Cojocaru-Mirédin, O., Wuttig, M., MRS Bull . 44 (9), 699 (2019).Google Scholar
Noverthover, W.R., Pearson, A.D., US Patent 3117013 (1964).Google Scholar
Ovshinsky, S.R., US Patent 3271591 (1966).Google Scholar
Ovshinsky, S.R., Phys. Rev. Lett. 22, 1450 (1968).CrossRefGoogle Scholar
Nelson, D.L., J. Non Cryst. Solids 2, 528 (1970).CrossRefGoogle Scholar
Anbarasu, M., Asokan, S., J. Appl. Phys. 109, 084517 (2011).CrossRefGoogle Scholar
Manivannan, A., Myana, S.K., Miriyala, K., Sahu, S., Ramadura, R., Appl. Phys. Lett. 105, 243501 (2014).CrossRefGoogle Scholar
Lee, M.-J., Lee, D., Kim, H., Choi, H.-S., Park, J.-B., Kim, H.G., Cha, Y.-K., Chung, U-I., Yoo, I.-K., Kim, K., IEDM Tech. Dig. 2.6.1 (2012).Google Scholar
Lee, M.-J., Lee, D., Cho, S.-H., Hur, J.-H., Lee, S.-M., Seo, D.H., Kim, D.-S., Yang, M.-S., Lee, S., Hwang, E., Uddin, M.R., Kim, H., Chung, U.I., Park, Y., Yoo, I.K., Nat. Commun. 4, 2629 (2013).CrossRefGoogle Scholar
Velea, A., Opsomer, K., Devulder, W., Dumortier, J., Fan, J., Detavernier, C., Jurczak, M., Govoreanu, B., Sci. Rep. 7, 8103 (2017).CrossRefGoogle Scholar
Yoo, J., Lee, D., Park, J., Song, J., Hwang, H., IEEE J. Electron Devices Soc. 6, 821 (2018).CrossRefGoogle Scholar
Chekol, S.A., Yoo, J., Park, J., Song, J., Sung, C., Hwang, H., Nanotechnology 29, 345202 (2018).CrossRefGoogle Scholar
Kim, S.-D., Ahn, H.-W., Shin, S.Y., Jeong, D.S., Son, S.H., Lee, H., Cheong, B.-K., Shin, D.W., Leea, S., ECS Solid State Lett . 2, Q75 (2013).CrossRefGoogle Scholar
Shin, S.-Y., Choi, J.M., Seo, J., Ahn, H.-W., Choi, Y.G., Cheong, B.-K., Lee, S., Sci. Rep. 4, 7099 (2014).CrossRefGoogle Scholar
Govoreanu, B., Donadio, G.L., Opsomer, K., Devulder, W., Afanas’ev, V.V., Witters, T., Clima, S., Avasarala, N.S., Redolfi, A., Kundu, S., Richard, O., Tsvetanova, D., Pourtois, G., Detavernier, C., Goux, L., Kar, G.S., Symposium on VLSI Technology (Kyoto, Japan, 2017), p. T92.Google Scholar
Verdy, A., Navarro, G., Sousa, V., Noé, P., Bernard, M., Fillot, F., Bourgeois, G., Garrione, J., Perniola, L., International Memory Workshop (2017), p. 1.Google Scholar
Navarro, G., Verdy, A., Castellani, N., Bourgeois, G., Sousa, V., Molas, G., Bernard, M., Sabbione, C., Noé, P., Garrione, J., Fellouh, L., Perniola, L., Symposium on VLSI Technology (Kyoto, Japan, 2017), p. T94.Google Scholar
Alayan, M., Vianello, E., Navarro, G., Carabasse, C., La Barbera, S., Verdy, A., Castellani, N., Levisse, A., Molas, G., Grenouillet, L., Magis, T., Aussenac, F., Bernard, M., DeSalvo, B., Portal, J.M., Nowak, E., IEDM Tech. Dig. 2.3.1 (2017).Google Scholar
Avasarala, N.S., Donadio, G.L., Witters, T., Opsomer, K., Govoreanu, B., Fantini, A., Clima, S., Oh, H., Kundu, S., Devulder, W., van der Veen, M.H., Van Houdt, J., Heyns, M., Goux, L., Kar, G.S., Symposium on VLSI Technology (Honolulu, 2018), p. 209.Google Scholar
Cheng, H.Y., Chien, W.C., Kuo, I.T., Yeh, C.W., Gignac, L., Kim, W., Lai, E.K., Lin, Y.F., Bruce, R.L., Lavoie, C., Cheng, C.W., Ray, A., Lee, F.M., Carta, F., Yang, C.H., Lee, M.H., Ho, H.Y., BrightSky, M., Lung, H.L., IEDM Tech. Dig. 37.3.1 (2018).Google Scholar
Cheng, H.Y., Chien, W.C., Kuo, I.T., Lai, E.K., Zhu, Y., Jordan-Sweet, J.L., Ray, A., Carta, F., Lee, F.M., Tseng, P.H., Lee, M.H., Lin, Y.Y., Kim, W., Bruce, R., Yeh, C.W., Yang, C.H., BrightSky, M., Lung, H.L., IEDM Tech. Dig. 2.2.1 (2017).Google Scholar
Kim, S., Kim, Y.-B., Kim, K.M., Kim, S.-J., Lee, S.R., Chang, M., Cho, E., Lee, M.-J., Lee, D., Kim, C.J., Chung, U-I., Yoo, I.-K., Symposium on VLSI Technology (Kyoto, Japan, 2013), p. T240.Google Scholar
Koo, Y., Bak, K., Hwang, H., Symposium on VLSI Technology (Kyoto, Japan, 2016), p. 1.Google Scholar
Verdy, A., Navarro, G., Bernard, M., Chevalliez, S., Castellani, N., Nolot, E., Garrione, J., Noé, P., Bourgeois, G., Sousa, V., Cyrille, M.-C., Nowak, E., International Reliability Physics Symposium (2018), p. 6D.4.1.Google Scholar
Lee, J.H., Kim, G.H., Ahn, Y.B., Park, J.W., Ryu, S.W., Hwang, C.S., Kim, H.J., Appl. Phys. Lett. 100, 123505 (2012).CrossRefGoogle Scholar
Kim, S., Ki, H.-D., Choi, S.-J., J. Alloys Compd. 667, 91 (2016).CrossRefGoogle Scholar
Koo, Y., Hwang, H., Sci. Rep. 8, 11822 (2018).CrossRefGoogle Scholar
Verdy, A., Navarro, G., Bernard, M., Noé, P., Licitra, C., Bourgeois, G., Garrione, J., Cyrille, M.C., Sousa, V., Nowak, E., International Memory Workshop (2017), pp. 14.Google Scholar
Bez, B.., IEDM Tech. Dig. 5.1.1 (2009).Google Scholar
Kroll, D.M., Phys. Rev. B 9, 1669 (1974).CrossRefGoogle Scholar
Kroll, D.M., Phys. Rev. B 11, 3814 (1975).CrossRefGoogle Scholar
Kaplan, T., Adler, D., Appl. Phys. Lett. 19, 418 (1971).CrossRefGoogle Scholar
Karpov, V.G., Kryukov, Y.A., Savransky, S.D., Parpov, I.V., Appl. Phys. Lett. 90, 123504 (2007).CrossRefGoogle Scholar
Karpov, V.G., Kryukov, Y.A., Karpov, I.V., Mitra, M., Phys. Rev. B 78, 052201 (2008).CrossRefGoogle Scholar
Zhu, M., Xia, M., Song, Z., Cheng, Y., Wu, L., Rao, F., Song, S., Wang, M., Lu, Y., Feng, S., Nanoscale 7, 9935 (2015).CrossRefGoogle Scholar
Menzel, S., Bottger, U., Wimmer, M., Salinga, M., Adv. Funct. Mater. 25, 6306 (2015).CrossRefGoogle Scholar
Ren, K., Zhu, M., Song, W., Lv, S., Xia, M., Wang, Y., Lu, Y., Ji, Z., Song, Z., Nanoscale 11, 1595 (2019).CrossRefGoogle ScholarPubMed
Adler, D., Shur, M.S., Silver, M., Ovshinsky, S.R., J. Appl. Phys. 51, 3289 (1980).CrossRefGoogle Scholar
Czubatyj, W., Hudgens, S.J., Electron. Mater. Lett. 8, 157 (2012).CrossRefGoogle Scholar
Pirovano, A., Lacaita, A.L., Benvenuti, A., Pellizzer, F., Bez, R., IEEE Trans. Electron Devices 51, 452 (2004).CrossRefGoogle Scholar
Redaelli, A., Pirovno, A., Benvenuti, A., Lacaita, A.L., J. Appl. Phys. 103, 111101 (2008).CrossRefGoogle Scholar
Ielmini, D., Zhang, Y., J. Appl. Phys. 102, 054517 (2007).CrossRefGoogle Scholar
Clima, S., Govoreanu, B., Opsomer, K., Velea, A., Avasarala, N.S., Devulder, W., Shlyakhov, I., Donadio, G.L., Witters, T., Kundu, S., Goux, L., Afanasiev, V., Kar, G.S., Pourtois, G., IEDM Tech. Dig. 4.1.1 (2017).Google Scholar