Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T16:43:48.040Z Has data issue: false hasContentIssue false

Phase-change materials and rigidity

Published online by Cambridge University Press:  10 January 2017

Andrea Piarristeguy
Affiliation:
Institut Charles Gerhardt, Université de Montpellier, France; andrea.piarristeguy@umontpellier.fr
Annie Pradel
Affiliation:
Centre National de la Recherche Scientifique, Institut Charles Gerhardt, Université de Montpellier, France; annie.pradel@umontpellier.fr
Jean-Yves Raty
Affiliation:
Institut de Physique, Université de Liège, Belgium; jyraty@ulg.ac.be
Get access

Abstract

Rigidity theory is an extraordinary tool to understand glasses. This article demonstrates how this model can help in understanding the link between structure, dynamics, and subtler properties such as drift and aging, in particular, in phase-change materials (PCMs). First, a map of flexible/rigid regions in the Ge-(Sb)-Te system is drawn on the basis of atomistic structures modeled either by ab initio or reverse Monte Carlo techniques. A clear link between the flexible/rigid nature of the glass and its aging behavior is shown through resistivity drift as a function of composition measurements in amorphous GexTe100–x. In the particular case of amorphous GeTe, application of rigidity theory indicates that the average number of mechanical constraints decreases during aging, making the glass less stressed-rigid. Finally, the stability of PCMs also depends on the topology of the materials. The increasing number of constraints in GeTe when doped with C or N results in increased stability of the PCM.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wuttig, M., Nat. Mater. 4, 265 (2005).Google Scholar
Yamada, N., MRS Bull. 21 (9), 48 (1996).CrossRefGoogle Scholar
Pradel, A., in Du Verre au Cristal, Neuville, D., Cormier, L., Caurant, D., Montagne, L., Eds. (EDP Sciences, Les Ulis, France, 2013), p. 441.Google Scholar
Phillips, J.C., J. Non Cryst. Solids 34, 153 (1979).Google Scholar
Micoulaut, M., Raty, J.-Y., Otjacques, C., Bichara, C., Phys. Rev. B Condens. Matter 81, 174206 (2010).CrossRefGoogle Scholar
Piarristeguy, A., Micoulaut, M., Escalier, R., Jóvári, P., Kaban, I., van Eik, J., Luckas, J., Ravindren, S., Boolchand, P., Pradel, A., J. Chem. Phys. 143, 074502 (2015).Google Scholar
Jóvári, P., Piarristeguy, A.A., Escalier, R., Kaban, I., Bednarcik, J., Pradel, A., J. Phys. Condens. Matter 25, 195401 (2013).Google Scholar
Vigreux, C., Piarristeguy, A.A., Escalier, R., Ménard, S., Barillot, M., Pradel, A., Phys. Status Solidi A 211, 932 (2014).Google Scholar
Luckas, J., Olk, A., Jost, P., Volker, H., Alvarez, J., Jaffré, A., Zalden, P., Piarristeguy, A., Pradel, A., Longeaud, C., Wuttig, M., Appl. Phys. Lett. 105, 092108 (2014).CrossRefGoogle Scholar
Mitrofanov, K.V., Kolobov, A.V., Fons, P., Wang, X., Tominaga, J., Tamenori, Y., Uruga, T., Ciocchini, N., Ielmini, D., J. Appl. Phys. 115, 173501 (2014).CrossRefGoogle Scholar
Kolobov, A.V., Fons, P., Tominaga, J., Phys. Rev. B Condens. Matter 87, 155204 (2013).Google Scholar
Raty, J.Y., Zhang, W., Luckas, J., Chen, C., Mazzarello, R., Bichara, C., Wuttig, M., Nat. Commun. 6, 7467 (2015).Google Scholar
Raty, J.Y., Noé, P., Ghezzi, G., Maîtrejean, S., Bichara, C., Hippert, F., Phys. Rev. B Condens. Matter 88, 014203 (2013).Google Scholar
Florez-Ruiz, H.M., Naumis, G.G., Phillips, J.C., Phys. Rev. B Condens. Matter 82, 214201 (2010).Google Scholar