Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-04T06:03:18.525Z Has data issue: false hasContentIssue false

Recent Advances in Methods of Forming Carbon Nanotubes

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Since their discovery, carbon nanotubes, both single-walled and multiwalled, have been a focus in materials research. Fundamental research and application development hinge on high-quality nanotube materials and controlled routes to their organization and assembly. The aim of this article is to provide updated information on recent progress in the synthesis of carbon nanotubes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iijima, S., Nature 354 (1991) p. 56.CrossRefGoogle Scholar
2. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tománek, D., Fischer, J.E., and Smalley, R.E., Science 273 (1996) p. 483.CrossRefGoogle Scholar
3. Dai, H.J., Acc. Chem. Res. 35 (2002) p. 1035.Google Scholar
4. Odom, T.W., Huang, J.-L., Kim, P., and Lieber, C.M., J. Phys. Chem. B 104 (2001) p. 2794.Google Scholar
5. Smalley, R.E. and Yakobson, B.I., Solid State Commun. 107 (1998) p. 597.CrossRefGoogle Scholar
6. Ajayan, P.M. and Ebbesen, T.W., Rep. Prog. Phys. 60 (1997) p. 1025.Google Scholar
7. Special issue on carbon nanotubes in Appl. Phys. A. 67 (1998) pp. 1119.CrossRefGoogle Scholar
8. Special issue on carbon nanotubes in Carbon 40 (2002) pp. 16191842.Google Scholar
9. Special issue on carbon nanotubes in Accounts of Chemical Research 35 (2002).Google Scholar
10. Dresselhaus, M.S., Dresselhaus, G., and Eklund, P.C., Science of Fullerenes and Carbon Nanotubes Nanotubes (Academic Press, San Diego, 1996).Google Scholar
11. Dresselhaus, M.S., Dresselhaus, G., and Avouris, P., Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Topics in Applied Physics Vol. 80) (Springer-Verlag, New York, 2001).Google Scholar
12. Harris, P., Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century (Cambridge University Press, Cambridge, UK, 2001).Google Scholar
13. Saito, R., Dresselhaus, G., and Dresselhaus, M.S., Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).CrossRefGoogle Scholar
14. Gavillet, J., Loiseau, A., Journet, C., Willaime, F., Ducastelle, F., and Charlier, J.C., Phys. Rev. Lett. 87 (2001).CrossRefGoogle Scholar
15. Roland, C., Bernholc, J., Brabec, C., Nardelli, M.B., and Maiti, A., Mol. Simul. 25 (2000) p. 1.Google Scholar
16. Charlier, J.C., Blase, X., Vita, A. De, and Car, R., Appl. Phys. A 68 (1999) p. 267.CrossRefGoogle Scholar
17. Lee, Y.H., Kim, S.G., and Tomanek, D., Phys. Rev. Lett. 78 (1997) p. 2393.CrossRefGoogle Scholar
18. Maiti, A., Brabec, C.J., and Bernholc, J., Phys. Rev. B 55 (1997) p. R6097.Google Scholar
19. Bethune, D.S., Kiang, C.H., DeVries, M.S., Gorman, G., Savoy, R., and Beyers, R., Nature 363 (1993) p. 605.Google Scholar
20. Journet, C., Maser, W.K., Bernier, P., Loiseau, A., Chapelle, M. Lamy de la, Lefrant, S., Deniard, P., Lee, R., and Fischer, J.E., Nature 388 (1997) p. 756.Google Scholar
21. Pierson, H.O., Handbook of Chemical Vapor Deposition (Noyes Publications, Park Ridge, NJ, 1992).Google Scholar
22. Hampden-Smith, M.J. and Kodas, T.T., Chem. Vap. Deposition 1 (1995) p. 8.Google Scholar
23. Dresselhaus, M.S., Dresselhaus, G., Sugihara, K., Spain, I.L., and Goldberg, H.A., Graphite Fibres and Filaments (Springer-Verlag, Berlin, 1988).Google Scholar
24. Ashfold, M.N.R., May, P.W., Rego, C.A., and Everitt, N.M., Chem. Soc. Rev. 23 (1994) p. 21.Google Scholar
25. Snyder, C.E., Mandeville, H., Tennent, H.G., Truesdale, L.K., and Barber, J.J., U.S. Patent No. 5,877,110 (March 2, 1999).Google Scholar
26. Tibbetts, G.G., Appl. Phys. Lett. 42 (1983) p. 666.Google Scholar
27. Buckley, H.D. and Edie, D.D., Carbon-Carbon Materials and Composites (Noyes Publications, Park Ridge, NJ, 1993).Google Scholar
28. Endo, M., Oberlin, A., and Koyama, T., Jpn. J. Appl. Phys. 16 (1977) p. 1519.Google Scholar
29. Tennent, H.G., U.S. Patent No. 4,663,230 (May 5, 1987).Google Scholar
30. Endo, M., Takeuchi, K., Kobori, K., Takahashi, K., Kroto, H., and Sarkar, A., Carbon 33 (1995) p. 873.Google Scholar
31. Dai, H., Rinzler, G., Nikolaev, P., Thess, A., Colbert, D.T., and Smalley, R.E., Chem. Phys. Lett. 260 (1996) p. 471.Google Scholar
32. Kong, J., Cassell, A.M., and Dai, H.J., Chem. Phys. Lett. 292 (1998) p. 567.CrossRefGoogle Scholar
33. Hafner, J.H., Bronikowski, M.J., Azamian, B.R., Nikolaev, P., Rinzler, A.G., Colbert, D.T., Smith, K.A., and Smalley, R.E., Chem. Phys. Lett. 296 (1998) p. 195.CrossRefGoogle Scholar
34. Kong, J., Soh, H.T., Cassell, A.M., Quate, C.F., and Dai, H., Nature 395 (1998) p. 878.Google Scholar
35. Zhang, Y.G., Chang, A.L., Cao, J., Wang, Q., Kim, W., Li, Y.M., Morris, N., Yenilmez, E., Kong, J., and Dai, H.J., Appl. Phys. Lett. 79 (2001) p. 3155.CrossRefGoogle Scholar
36. Su, M., Li, Y., Maynor, B., Buldum, A., Lu, J.P., and Liu, J., J. Phys. Chem. B 104 (2000) p. 6505.Google Scholar
37. Franklin, N.R. and Dai, H., Adv. Mater. 12 (2000) p. 890.3.0.CO;2-K>CrossRefGoogle Scholar
38. Huang, S., Cai, X., and Liu, J., J. Am. Chem. Soc. 125 (2003) p. 5636.CrossRefGoogle Scholar
39. Cheung, C.L., Kurtz, A., Park, H., and Lieber, C.M., J. Phys. Chem. B 106 (2002) p. 2429.CrossRefGoogle Scholar
40. Li, Y.M., Kim, W., Zhang, Y.G., Rolandi, M., Wang, D.W., and Dai, H.J., J. Phys. Chem. B 105 (2001) p. 11424.Google Scholar
41. Tang, Z.K., Sun, H.D., Wang, J., Chen, J., and Li, G., Appl. Phys. Lett. 73 (1998) p. 2287.CrossRefGoogle Scholar
42. An, L., Owens, J.M., McNeil, L.E., and Liu, J., J. Am. Chem. Soc. 124 (2002) p. 13688.CrossRefGoogle Scholar
43. Cassell, A.M., Raymakers, J.A., Kong, J., and Dai, H.J., J. Phys. Chem. B 103 (1999) p. 6484.Google Scholar
44. Su, M., Zheng, B. and Liu, J., Chem. Phys. Lett. 322 (2000) p. 321.Google Scholar
45. Colomer, J.F., Stephan, C., Lefrant, S., Tendeloo, G. Van, Willems, I., Konya, Z., Fonseca, A., Laurent, C., and Nagy, J.B., Chem. Phys. Lett. 317 (2000) p. 83.Google Scholar
46. Li, Q.W., Yan, H., Cheng, Y., Zhang, J., and Liu, Z.F., J. Mater. Chem. 12 (2002) p. 1179.Google Scholar
47. Harutyunyan, A.R., Pradhan, B.K., Kim, U.J., Chen, G.G., and Eklund, P.C., Nano Lett. 2 (2002) p. 525.Google Scholar
48. Nikolaev, P., Bronikowski, M.J., Bradley, R.K., Rohmund, F., Colbert, D.T., Smith, K.A., and Smalley, R.E., Chem. Phys. Lett. 313 (1999) p. 91.Google Scholar
49. Bronikowski, M.J., Willis, P.A., Colbert, D.T., Smith, K.A., and Smalley, R.E., J. Vac. Sci. Technol., A 19 (2001) p. 1800.Google Scholar
50. Endo, M., Takeuchi, K., Kobori, K., Takahashi, K., Kroto, H.W., and Sarkar, A., Carbon 33 (1995) p. 873.Google Scholar
51. Kamalakaran, R., Terrones, M., Seeger, T., Kohler-Redlich, P., Ruhle, M., Kim, Y.A., Hayashi, T., and Endo, M., Appl. Phys. Lett. 77 (2000) p. 3385.CrossRefGoogle Scholar
52. Cheng, H.M., Li, F., Su, G., Pan, H.Y., He, L.L., Sun, X., and Dresselhaus, M.S., Appl. Phys. Lett. 72 (1998) p. 3282.CrossRefGoogle Scholar
53. Satishkumar, B.C., Govindaraj, A., Sen, R., and Rao, C.N.R., Chem. Phys. Lett. 293 (1998) p. 47.Google Scholar
54. Bladh, K., Falk, L.K.L., and Rohmund, F., Appl. Phys. A. 70 (2000) p. 317.CrossRefGoogle Scholar
55. Ci, L., Xie, S., Tang, D., Yan, X., Li, Y., Liu, Z., Zou, X., Zhou, W., and Wang, G., Chem. Phys. Lett. 349 (2001) p. 191.Google Scholar
56. Zhu, H.W., Xu, C.L., Wu, D.H., Wei, B.Q., Vajtai, R., and Ajayan, P.M., Science 296 (2002) p. 884.Google Scholar
57. Zheng, B., Li, Y., and Liu, J., Appl. Phys. A 74 (2002) p. 345.Google Scholar
58. Kitiyanan, B., Alvarez, W.E., Harwell, J.H., and Resasco, D.E., Chem. Phys. Lett. 317 (2000) p. 497.Google Scholar
59. Alvarez, W.E., Kitiyanan, B., Borgna, A., and Resasco, D.E., Carbon 39 (2001) p. 547.Google Scholar
60. Bachilo, S.M., Balzano, L., Herrera, J.E., Pompeo, F., Resasco, D.E. and Weisman, R.B., “Narrow (n, m) Distribution of Single-Walled Carbon Nanotubes Grown Using a Solid Supported Catalyst” (unpublished manuscript), http://www.ou.edu/engineering/nanotube/publications.html (accessed February 2004).Google Scholar
61. Zheng, B., Lu, C., Gu, G., Makarovski, A., Finkelstein, G., and Liu, J., Nano Lett. 2 (2002) p. 895.Google Scholar
62. Maruyama, S., Kojima, R., Miyauchia, Y., Chiashia, S., and Kohno, M., Chem. Phys. Lett. 360 (2002) p. 229.Google Scholar
63. Javey, A., Guo, J., Wang, Q., Lundstrom, M., and Dai, H.J., Nature 424 (2003) p. 654.CrossRefGoogle Scholar
64. McEuen, P.L., Fuhrer, M.S., and Park, H.K., IEEE Transactions on Nanotechnology 1 (2002) p. 78.CrossRefGoogle Scholar
65. Javey, A., Kim, H., Brink, M., Wang, Q., Ural, A., Guo, J., McIntyre, P., McEuen, P., Lundstrom, M., and Dai, H.J., Nat. Mater. 1 (2002) p. 241.Google Scholar
66. Rosenblatt, S., Yaish, Y., Park, J., Gore, J., Sazonova, V., and McEuen, P.L., Nano Lett. 2 (2002) p. 869.Google Scholar
67. Fuhrer, M.S., Kim, B.M., Durkop, T., and Brintlinger, T., Nano Lett. 2 (2002) p. 755.Google Scholar
68. Choi, H.C., Kim, W., Wang, W., and Dai, H.J., J. Phys. Chem. B 106 (2002) p. 12361.CrossRefGoogle Scholar
69. Cassell, A.M., Franklin, N.R., Tombler, T.W., Chan, E.M., Han, J., and Dai, H., J. Am. Chem. Soc. 121 (1999) p. 7975.Google Scholar
70. Gogotsi, Y., Libera, J.A., Kalashnikov, N., and Yoshimura, M., Science 290 (2000) p. 317.Google Scholar
71. Kusunoki, M., Suzuki, T., Honjo, C., Hirayama, T., and Shibata, N., Chem. Phys. Lett. 366 (2002) p. 458.Google Scholar
72. Kusunoki, M., Suzuki, T., Hirayama, T., Shibata, N., and Kaneko, K., Appl. Phys. Lett. 77 (2000) p. 531.Google Scholar
73. Kusunoki, M., Rokkaku, M., and Suzuki, T., Appl. Phys. Lett. 71 (1997) p. 2620.Google Scholar
74. Derycke, V., Martel, R., Radosvljevic, M., Ross, F.M.R., and Avouris, P., Nano Lett. 2 (2002) p. 1043.Google Scholar
75. Technology Opportunity Sheet, “Innovative Manufacturing Procedure For Low Cost And High Quality Carbon Nanotubes,” NASA Goddard Space Flight Center Technology Transfer Program Web site, http://techtransfer. gsfc.nasa.gov/, reference number GSC-14435-1 (accessed February 2004).Google Scholar
76. Wei, B.Q., Vajtai, R., Jung, Y., Ward, J., Zhang, R., Ramanath, G., and Ajayan, P.M., Nature 416 (2002) p. 495.Google Scholar
77. Huang, S.M. and Mau, A.W.H., J. Phys. Chem. B 107 (2003) p. 3455.Google Scholar
78. Huang, S.M. and Mau, A.H.W., Appl. Phys. Lett. 82 (2003) p. 796.Google Scholar
79. Matsumoto, K., Kinosita, S., Gotoh, Y., Uchiyama, T., Manalis, S., and Quate, C., Appl. Phys. Lett. 78 (2001) p. 539.Google Scholar
80. Umnov, A.G., Matshushita, T., Endo, M., and Takeuchi, Y., Chem. Phys. Lett. 356 (2002) p. 391.Google Scholar
81. Fan, S.S., Chapline, M.G., Franklin, N.R., Tombler, T.W., Cassell, A.M., and Dai, H.J., Science 283 (1999) p. 512.Google Scholar
82. Cheung, C.L., Hafner, J.H., Odom, T.W., Kim, K., and Lieber, C.M., Appl. Phys. Lett. 76 (2000) p. 3136.Google Scholar
83. Li, Y.M., Mann, D., Rolandi, M., Kim, W., Ural, A., Hung, S., Javey, A., Cao, J., Wang, D.W., Yenilmez, E., Wang, Q., Gibbons, J.F., Nishi, Y., and Dai, H.J., Nano Lett. 4 (2004) p. 317.Google Scholar